
Introduction to
Web 3

Brought to you by Addis software

Contents
What to Know

What is Solidity?01

Types02

Functions05

Function Modifier06

Gas07

Visibility04

Variables03

Introduction to Solidity

What is Solidity

Solidity is an object-oriented, high-level language for implementing
smart contracts.

Smart contracts are programs that govern the behavior of accounts
within the Ethereum state.

Solidity is statically typed, and supports inheritance, libraries, and
complex user-defined types among other features.

Data Types
Value Types - A value type stores its data directly in the memory it owns.

Variables of this type are duplicated whenever they appear in functions or

assignments. A value type will maintain an independent copy of any

duplicated variables. Therefore, a change in the value of a duplicated

variable will not affect the original variable.

Reference Types - Solidity reference types differ from value types in that

they do not store values directly on their own. Instead, reference types

store (or “reference”) the address of the data’s location and do not directly

share the data.

Value Types

Signed integers (int)1

Unsigned integers (uint)
uint256, uint32, uint16, uint8

2

Boolean3

Addresses
designed to hold up to 20B, or 160 bits,
which is the size of an Ethereum
address.
address, address payable (call, send,
transfer)

4

Enums
consist of user-defined data types

5

Bytes
refers to 8-bit signed integers
range — from bytes1 to bytes32

6

https://blog.logrocket.com/ultimate-guide-data-types-solidity/#signed-integers
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#signed-integers
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#unsigned-integers
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#unsigned-integers
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#boolean
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#boolean
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#addresses
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#addresses
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#enums
https://blog.logrocket.com/ultimate-guide-data-types-solidity/#enums

Refrence
Types

Arrays
fixed, dynamic sized

1

Byte Array
can hold any number of bytes
bytes

2

String arrays
are like byte arrays
 does not have an index so it lacks
array members such as length, push,
and pop

3

Structs
made up of multiple variables, which can
be both value type and reference type.
struct

4

Mapping
used to store data in the form of
key-value pairs
similarly to a hashtable or
dictionary in other programming
languages
mapping(address => bool)

5

https://blog.logrocket.com/ultimate-guide-data-types-solidity/#addresses

Variables
local - declared inside a function. not stored on the blockchain.

state - declared outside a function. stored on the blockchain.

global - provides information about the blockchain.

 https://docs.soliditylang.org/en/v0.8.15/units-and-globalvariables.html

Visibility
Private - only to inside contract.

Public - to any contract.

Internal - only inside contract and children.

external - only from outside contract. (this.externalFunction())

Functions
function name(arg 1, arg 2,...) visibility behaviour returns(types){

}

view - don't modify variable, read-only

pure - don't modify or read state

payable - denotes a function that can receive ether

behaviour

The Fallback function
function () external payable{

}

no name

no arguments

don't return

only external visibility

only payable behaviour

It has

a call to a function that doesn't exist

sending ether to that contract

Called When

Guard functions
assert()

require()

revert()

example

require(msg.value > 1); // value must be greater than 1

Function modifiers

Modifiers are code that can be run before and / or after a function call.

Restrict access
Validate inputs
Guard against reentrancy hack

Are used to -

Gas

a fee which is required to conduct a transaction on the Ethereum
blockchain.

Sender pays the gas

Minors(who adds block to the blockchain), recives the gas

Cost of gas depended on difficulty of computation

Limit the amount of computation a transaction can do (Prevent
spamming)

Gas Limit

max gas you are willing to use.

Gas Price

how much you are willing tp pay for each gas.

The higher the gas limit, the higher the computation you can process.
Higher gas price, short waiting time, and vice versa

https://ethereum.org/en/developers/docs/evm/opcodes/

DEMO TIME...

Thank You!

