
Functional Programming: 101

Introduction to functional programming with JavaScript



What is functional programming?

● Derived from λ-calculus (lambda calculus)

● In the late 1950s, John McCarthy took the concepts derived from λ-calculus and applied them to a 

new programming language called Lisp

● Lisp implemented the concept of higher-order functions and functions as first-class members or 

first-class citizens.



What is functional programming?

● JavaScript supports functional programming because JavaScript functions are first-class citizens.

● JavaScript functions can be
○ Assigned to variables,

○ Added to arrays & objects

○ Sent to & returned from other functions



Let’s look at some examples



The same function using an arrow function



Functions can be added to objects like variables



We can also add functions to arrays in JavaScript



Functions can be sent to other functions as arguments



Functions can also be returned from other functions



The same function using an arrow function



In conclusion

● Functions are data

● In JavaScript, functions can represent data in your application since they can be saved, retrieved, or 

flow through your applications just like variables



Imperative vs Declarative



Imperative vs Declarative

● Functional programming is a part of a larger programming paradigm: declarative programming.

● Declarative programming is a style of programming where applications are structured in a way that 

prioritizes describing what should happen over defining how it should happen.



Imperative vs Declarative

Imperative Declarative



Imperative vs Declarative

● In a declarative program, the syntax itself describes what should happen and the details of how 

things happen are abstracted away.

● Declarative programs are easy to reason about because the code itself describes what is 

happening.



Let’s look at another example

Imperative Declarative



Functional Concepts



Functional Concepts

● The core concepts of functional programming
○ Immutability

○ Purity

○ Data transformation

○ Higher-order functions

○ Recursion and

○ Composition



Immutability



Immutability

● To mutate is to change, so to be immutable is to be unchangeable

● In a functional program, data is immutable, it never changes.

● Instead of changing the original data structures, we build changed copies of those data structures 

and use them instead.



Let’s look at some examples



Rewrite the rateColor function



The same function using an arrow function



Let’s consider an array of color names



Rewrite the rateColor function



Using the ES6 spread operator



Pure Functions



Pure Functions

● A pure function is a function that returns a value that is computed based on its arguments.

● Pure functions take at least one argument and always return a value or another function.

● They do not cause side effects, set global variables, or change anything about application state. 

● They treat their arguments as immutable data.



What does an impure function look like?



Let’s rewrite the selfEducate function



Let’s examine an impure function that mutates the DOM



Let’s rewrite the Header function with React



When writing pure functions, try to follow these 3 rules:

1. The function should take in at least one argument

2. The function should return a value or another function

3. The function should not change or mutate any of its arguments



Pure functions are naturally testable

● Pure functions do not change anything about their environment and therefore do not require a complicated test 
setup.

● Everything a pure function needs to operate it accesses via arguments.
● When testing a pure function, you control the arguments, and thus you can estimate the outcome.



Data Transformations



How does anything change in an application if the data is immutable?

● Functional programming is all about transforming data from one form to another.

● Transformed copies of data (i.e. one dataset that is based upon another) can be produced using 

functions

● JavaScript has two core functions used to achieve this: Array.map and Array.reduce



Array.join: transform an array into a string



Array.filter: remove items from an array



Array.map



Array.map: transform an array of objects into an array of strings



Array.map in conjunction with Object.keys



Array.reduce: transform an array into a primitive value



Array.reduce: transform an array into an object



Array.reduce: transform arrays into completely different arrays



Higher-Order Functions



Higher-Order Functions

● Higher-order functions are functions that can manipulate other functions.

● They can take functions in as arguments, or return functions, or both.



Higher-Order Functions

● The first category of higher-order functions are functions that expect other functions as 

arguments. Array.map, Array.filter, and Array.reduce all take functions as arguments. They are 

higher-order functions.



How can we implement a higher-order function?



Higher-Order Functions

● Higher-order functions that return other functions can help us handle the complexities associated 

with asynchronicity in JavaScript.

● Currying is a functional technique that involves the use of higher-order functions.

● Currying is the practice of holding on to some of the values needed to complete an operation until 

the rest can be supplied at a later point in time.

● This is achieved through the use of a function that returns another function, the curried function.



Currying



Recursion



Recursion

● Recursion is a technique that involves creating functions that recall themselves.

● In a challenge that involves a loop, a recursive function can be used instead.



Recursion: Example



Recursion

● Recursion is a good technique for searching data structures.

● You can use recursion to iterate through subfolders until a folder that contains only files is 

identified.

● You can also use recursion to iterate through the HTML DOM until you find an element that does 

not contain any children.



Recursion: Example



Composition



Composition

● Functional programs break up their logic into small pure functions that are focused on specific 

tasks. Eventually, you will need to put these smaller functions together.

● Specifically, you may need to combine them, call them in series or parallel, or compose them into 

larger functions until you eventually have an application.

● When it comes to composition, there are a number of different implementations, patterns, and 

techniques. 



Chaining

● Functions can be chained together using dot notation to act on the return value of the previous 

function



Composition

● Chaining is one composition technique, but there are others. The goal of composition is to 

“generate a higher order function by combining simpler functions.



Composition


