
Node.js Course
An overview of advanced concepts, best practices, security, and 

concurrency in Node.js development.



You gotta learn javascript man
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Node.js is a JavaScript 
runtime built on 

Chrome's V8 JavaScript 
engine.

It allows developers to 
build scalable and 
high-performance 

applications.

Node.js uses an 
event-driven, non-blocking 
I/O model that makes it 
lightweight and efficient.

Some popular use cases of 
Node.js include web 
servers, real-time 
applications, and 
microservices.

Introduction to Node.js



Advanced Concepts in Node.js
● Event Loop: The Node.js event loop allows asynchronous operations to be handled efficiently without 

blocking the main thread. It's fundamental to Node.js's non-blocking I/O model. As an endless loop, it 
passes the requests to the thread Pool and each request is registered a Callback function.  When a 
request is finished handling, the corresponding Callback function will be called to be executed.

● Streams: Streams are a way to handle data incrementally, which can be especially useful when dealing 
with large files or network data.

● Promises and async/await: Promises provide a clean way to work with asynchronous operations, and 
async/await simplifies asynchronous code, making it more readable.

● Error Handling Strategies: Node.js commonly uses error-first callbacks for handling errors, but Promises 
and async/await make error handling more straightforward.

● Child Processes: Node.js can create child processes to execute code in parallel, useful for tasks like 
offloading CPU-intensive work or running other scripts concurrently.





01 02

03 04

Node.js Security

Secure Dependencies: Regularly update 
and review dependencies to avoid 
known vulnerabilities.

Input Validation: Validate and sanitize 
user input to prevent security 
vulnerabilities.

Authentication and Authorization: 
Implement secure user authentication 
and authorization mechanisms.

Secure Error Handling: Handle errors 
securely to avoid exposing sensitive 
information.



Best Practices in Node.js Development

Code Structure and Organization:

● Structuring Node.js projects is vital for code maintainability and scalability.
● Organize your project into directories like controllers, models, routes, middlewares, and configuration.
● This promotes modularity and clarity in your codebase.
● Always set up linting and formatting configurations

Asynchronous Programming Patterns:

● Asynchronous programming is central to Node.js, and using the right patterns can enhance code readability.
● We recommend using Promises and async/await to handle asynchronous operations.
● Let's look at an example.



// Using Promises for async operations

async function fetchData() {

return new Promise((resolve, reject) => {

setTimeout(() => {

const data = 'Some data from an async operation';

resolve(data);

}, 2000);

});

}

async function process() {

try {

const result = await fetchData();

console.log(result);

} catch (error) {

console.error(error);

}}

process();



Debugging Tools:

● Debugging is a critical part of the development process.
● Node.js provides powerful debugging tools, including Node.js Inspector.
● These tools help you identify and fix issues efficiently.
● Let's see how to use Node.js Inspector.



// Debugging with Node.js Inspector

const a = 5;

const b = 10;

debugger; // This line triggers the debugger

const result = a + b;

console.log(result);



Logging Best Practices:

● Effective logging is essential for troubleshooting and monitoring applications.
● Winston is a widely used logging library in Node.js that provides flexibility and 

configurability.
● Let's discuss how to use Winston for logging.
● Use different log levels (e.g., info, error, debug) to distinguish between the severity of log 

messages.



const winston = require('winston');

// Create a Winston logger instance

const logger = winston.createLogger({

level: 'info',

format: winston.format.json(),

transports: [

new winston.transports.Console(),

new winston.transports.File({ filename: 'error.log', level: 'error' }),

new winston.transports.File({ filename: 'combined.log' }),

]});

logger.log('info', 'This is an informational message.');

logger.log('error', 'An error occurred.');

// Winston allows you to log to different transports (e.g., console, files) with various log 

levels.



Best Practices for Node.js Security:

● Implement strong input validation and sanitize user inputs.
● Use secure authentication and authorization mechanisms.
● Regularly update Node.js and its dependencies to patch security vulnerabilities.
● Employ security middleware to protect against common attacks.
● Encrypt sensitive data at rest and in transit.
● Continuously monitor and log security events for quick response to threats.
● Helmet helps protect your application by setting HTTP headers like Content Security Policy (CSP), 

XSS Filter

● Run npm audit to check for vulnerabilities in your project's dependencies



Concurrency in Node.js

Understanding the Event Loop:

● It allows Node.js to handle numerous I/O operations without blocking the main thread.
● Events are processed asynchronously, enabling high concurrency.
● In Node, everything runs in parallel except your code

Clustering:

● Clustering is a technique to scale Node.js horizontally by creating multiple child processes (workers).
● Each worker can handle requests independently, distributing the load effective



const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length;
const express = require('express');

if (cluster.isMaster) {
// Fork workers for each CPU
for (let i = 0; i < numCPUs; i++) {
cluster.fork();
}

cluster.on('exit', (worker, code, signal) => {
console.log(`Worker ${worker.process.pid} died`);
});
} else {
const app = express();

app.get('/', (req, res) => {
res.send('Hello, Node.js!');
});

const server = http.createServer(app);

server.listen(8000, () => {
console.log(`Worker ${process.pid} listening on port 8000`);
}); }



Worker Threads:

● Worker Threads allow you to run JavaScript code in separate threads, enabling true parallelism.
● Useful for CPU-bound tasks to maximize utilization of multi-core processors.



const { Worker, isMainThread, parentPort, workerData } = require('worker_threads');
if (isMainThread) {
  // This is the main thread

  // Create a new Worker thread
  const worker = new Worker(__filename, {
    workerData: { num1: 5, num2: 7 }, // Pass data to the worker
  });

  // Listen for messages from the worker
  worker.on('message', (result) => {
    console.log(`Result from worker: ${result}`);
  });

  // Send data to the worker
  worker.postMessage('Calculate!');
} else {
  // This is the worker thread

  // Receive data from the main thread
  const { num1, num2 } = workerData;

  // Perform a simple calculation
  const result = num1 + num2;

  // Send the result back to the main thread
  parentPort.postMessage(result);
}



Load Balancing:

● Load balancing distributes incoming requests across multiple Node.js instances or servers to improve 
performance and reliability

● You can use the PM2 process manager to set up load balancing for your Node.js applications. 
● PM2 makes it easy to manage multiple instances of your application and distribute incoming traffic 

across them.

Caching Strategies:

● Caching frequently accessed data or results can reduce the need for expensive operations and improve 
response times.

● Example redis



Thank you for your time and attention 🙂


