Database Query Optimization

What is Database Query Optimization?

e Improving the efficiency and performance of database queries.
e The goal is to minimize the amount of time and system resources required to execute a query

e Importance:
o Faster Query Execution = Short response time & Improved User Experience
o Decrease strain on system resource by minimizing disk I/0O, Memory Consumption etc
o Handle large number of workloads and scale

Query Optimization in MongoDB

Query Execution Process

Query Parsing
Query Optimization
Query Execution
Result Transmission

s~ wh =

Query Execution Process in MongoDB

1. Query Parsing
- When a query is received, it is parsed to understand the structure and semantics.
- Checked against the collection’s schema to ensure its validity (valid references, etc)

2. Query Optimization
- Query optimizer analyzes the query and determines the most efficient query plan to
minimize the number of documents examined
- Takes available indexes, query predicates, sort orders etc
- Cost of using indexes is estimated and most suitable index(s) are selected

Query Execution Process in MongoDB

3. Query Execution:

- Based on the optimal plan, MongoDB executes the query.
- Locate matching documents based on query filtering, projection etc

4. Result Transmission:

- Data is read from disk/memory and returned

Diagnosing Slow Queries

Analyze queries using the EXPLAIN helper
e db.collection.<method>.explain (verbosity)

Verbosity Modes:

® ‘“gqueryPlanner” (Default) - Run the query optimizer to choose the winning plan and
return the details without executing it

® ‘“executionStats” - Choose and execute the winning plan and returns the statistics

® ‘“allPlansExecution” - Choose and execute the winning plan and return the stats
along with all other candidate plans evaluated during the plan selection process

Example - db.users.find({name: “Jane”}) .explain()

MongoDB Query Optimization Techniques

Proper Data Modelling

Indexing

Covered Queries

Optimizing Aggregation Pipelines

1. Proper Data Modelling

e When to embed a document or create a reference between separate documents

e Embedding
o 1:1 relationship can be imbedded in the same document,
o 1:many where the data are always accessed together (“many” are viewed in the

context of their parent)
o Might complicate data updates (update for each), stores redundant data (Trade

write performance for read performance)

e Referencing
o Preferable for many to many relations, Reduced document size

o Easier updates, independent querying
o Resolving references, round trips to the server can come at a cost

1. Proper Data Modelling

// Blog Document
{
_id: ObjectId("post_id"),
title: "My Blog Post",
content: "This is my blog content.",
comments: [
ObjectId("comment_id1"),
ObjectId("comment_id2")
]
}

// Comment Documents

{
_id: ObjectId("comment_id1"),
author: "Userl",
text: "Great post!",

}
{

_id: ObjectId("comment_id2"),
author: "User2",
text: "I enjoyed reading this.",
}
|

{
_id: ObjectId("post_id"),
title: "My Blog Post",
content: "This is my blog content.",
comments: [
{
_id: ObjectId("comment_id1"),
author: "Userl",
text: "Great post!",
}
{
_id: ObjectId("comment_id2"),
author: "User2",
text: "I enjoyed reading this.",
}
]
H

2. Indexing

e Queries are slowed down by unnecessary Collection Scans
e Data structures that contain a set of keys from documents and their values. Stored in memory

e Limit the number of documents MongoDB has to scan (by-pass full document scan) to improve
speed of retrieval / read operations

e Create an index for whatever field the query should run on. Defaults to _id

2.

& &

Indexing

.users.createIndex({name: 1})

.users.find ({name: “Ramel”})

.users.getIndexes ()
.users.dropIndex({name: 1})

Index player
Name [Reference Row | Name Age
James 1 1 James 23
Lyon 2 2 Lyon 22

Pat 3 3 Pat 20
Philip 7 pointing tablelm_) 4 Ramel 23
Ramel 4 e 5 Tim 20
Ramel 6 Poninglabe 0¥ g Ramel 21
Ramel 8 Soning tablelrow 7 Philip 19
Ramel 1000 — Ramel 22
Rozer 9 9 Rozer 17
Tim 5 pointing | table row

1000 | Ramel 19

Type of Indexes

e Single Index
o Collect and sort data from a single field in each document in a collection

O db.collection.createIndex({name: 1})

e Compound Index
o Collect and sort data from a >=2 fields in each document in a collection

O db.collection.createIndex ({<fieldl>: <sortOrder>,<field2>: sortOrder,.......
<fieldN>: <sortOrder>})

Type of Indexes - Compound Index

db.collection.createlIndex ({<fieldl>: <sortOrder>,<field2>: sortOrder,....... , <fieldN>:
<sortOrder>})

o Data is grouped by the first field in the index, and then by each subsequent field
o Queries can be supported on individual or combination of the indexes where the
prefix is always the first field

Example
db.collection.createIndex({“item”: 1, “location”: 1, “stock”: 1})

item

item and location

Item and stock

item, location and stock

Type of Indexes - Compound Index

db.users.createIndex({last name:1l, first name: 1})

Compound Index on

Documents n the Collecton
{ last_name : 1, first_name ' 1)

("Acevedo”,"Devin")

(Mrst_name™ "Drana”, “last_name™ “Badey”, ..}

{Mirst_name™ "Devin”, “last_name”. "Acevedo”, ...}
("Acosta™,"James”) -
{"frst_name™: “Adam”, “last_name™ “Baley", ..}
{Mrst_name™ "Chris”, “last_name". "Badey", ...}
("Badley”,"Adam")
. {rst_name™: "Abigail", “last_name". “Baley", ..)
("Bailey”,"Chris"™)
-

[iest_name™: “James”, “last_name": "Acosta”. .}

ESR (Equality, Sort, Range) Rule

e Order of the fields affects the effectiveness in compound indexes

e Equality (High Selectivity)

o Exact match on a single value to limit the number of documents

o Best placed as the first index field
e Sort

o Follows equality match to reduce amount of documents that need to be sorted
e Range (Loosely selective)

ESR (Equality, Sort, Range) Rule

db.cars.find ({

manufacturer: “Ford”, // Equality match

cost: {$gt: 15000} // Range

}) .sort({model: 1}) // Sorting

e Following ESR rule, the optimal index would be

O db.cars.createIndex({manufacturer:

l, model: 1, cost: 1})

Type of Indexes

e Geospatial Index
o For applications who continuously query a field with geospatial data
o Beneficial when querying with $near or $geoNear
0 db.collection.createIndex({ <location field> : "2dsphere" })

e Text Index
o Improve performance when searching words/phrases (string content)
0 db.collection.createlIndex({ <field> : "text" })

Indexing Pros / When to use

Repeatedly running queries on the same field & return a subset of documents
Faster sorting of query results
Large Collection sets

Text Search & Geospatial Queries

Indexing Cons

Query Selectivity - Indexed field has low selectivity (duplicate values)

e Write / Update performance overhead- Negative impact on write operations as indexes
should be updated to reflect the changes in the collection

e Index Selection & Planning - Improper index selection or over indexing can lead to increased
index selection process, unnecessary index updates etc

e Increased Memory Usage - Too much index = working set will not fit in the memory

3. Covered Queries

Indexing commonly queries fields

e Can the query can be satisfied without scanning any documents and use index only
scans
e Only satisfied if every field the query needs to access is part of the index

0 db.users.createIndex({ gender:1, name : 1})
© db.users.find({gender: “F”}, {name: 1, id:0})

4. Optimizing Aggregation Pipelines

e Process data through a
sequence of stages

e Pipeline stage order matters

O

Filtering early in the
pipeline stage

Using projection to limit
output,

Leveraging indexes

db. train.aggregate ([

{$match:

{$group:

1)

{
id:"181",
class:"first-class"”,
fare: 1200

}

{ .
id:"181",
class:"first-class",
fare: 1000

}

{ .
id:"181",
class:"second-class",
fare: 1eee

}

{
id:"167",
class:"first-class",
fare: 1208

}

{ .
id:"167",

class:"second-class”,

fare: 1500

{_id: “id”, total:

Smatch

PN

id:"181",

class:"first-class",

fare: 1200

id:"181",

class:"first-class"”,

fare: 1000

id:"167",

class:"first-class"”,

fare: 1200

{class: “first-class”}}, // Match stage

$group

{$sum: “$fare”}}} // Group Stage

{

}
{

_id:"1i81",
total: 2208

_id:"167",
total: 12ee

4. Optimizing Aggregation Pipelines

e Pipeline stage ordering
o Early stages should reduce result set ($match, $limit, etc)
o $sort as early as possible (Before any kind of transformations)
e Index utilization
o Index fields used in $match, $sort
e Use Projection
o Avoid unnecessary fields in the output
e Avoid large results
o $limit, $skip

e SetmaxTimeMs

Best Practices in Optimizing our queries

- Use .lean() method to return plain JSON instead of Mongoose documents
- Limit the results to reduce network demand

- Drop unnecessary indexes

- Use projection to return only necessary data

- Caching frequent query results (Redis, etc)

- Query profiling and Monitoring to identify bottlenecks (mongostat, etc)

END

