
By:- Bereket Woldesilasie

Agenda

Introduction

What is BDD

Key features of BDD

Cucumber

Demo

Advantage and Disadvantage of Bdd

Conclusion

Introduction
The most crucial aspect of building software is to create software that delivers
tangible value to its users.

In 2012, the U.S. Air Force decided to ditch a major software project that had
already cost over $1 billion USD. The Expeditionary Combat Support
System(ECSS) was designed to modernize and streamline supply chain
management in order to save billions of dollars and meet new legislative
requirements. The Air Force estimated that an additional $1.1 billion USD would be
required to deliver just a quarter of the original scope.

Software projects fail for many reasons, but the most significant causes fall into
two broad categories:

❖ Not building the software right
❖ Not building the right software

What is BDD
BDD stands for Behavior-Driven Development.It is an approach in software
development that emphasizes the behavior of an application for business needs.

It was first introduced by Dan North in 2003 as a response to the shortcomings of
traditional development practices like TDD

Test-Driven Development relies on a simple, three-phase cycle.

The traditional development process

What user need What developer understood What tester understood

BDD is a collaborative approach to software development that emphasizes
communication, collaboration, and shared understanding among all stakeholders.

It encourages the use of a common language, called the ubiquitous language, to
describe the desired behavior of the software in a way that is understandable to
both technical and non-technical team members.

It encourages developers to think in terms of the desired behavior of the software,
rather than just implementing features.

Key Features of BDD
1 Collaboration and Communication: BDD emphasizes collaboration and
communication among all stakeholders involved in the software development
process. It encourages active participation from business analysts, developers,
testers, and other team members to ensure a shared understanding of the desired
behavior of the software.
2 Ubiquitous Language: BDD promotes the use of a common language, often
referred to as the "ubiquitous language," that is shared and understood by both
technical and non-technical team members. This language helps to bridge the gap
between business requirements and technical implementation, fostering clearer
communication and reducing misunderstandings.

cont..
3 Specification by Example: BDD encourages the use of concrete examples and
scenarios to describe the desired behavior of the software. These examples serve
as living documentation that can be understood by both technical and
non-technical stakeholders. By focusing on specific examples, BDD helps to clarify
requirements and provides a common reference for discussion and validation.

4 Test Automation: BDD promotes the automation of tests based on the specified
behavior. The scenarios and examples defined in BDD are often written in a format
that can be executed as tests. By automating these tests, BDD ensures that the
software's behavior is verified continuously, allowing for faster feedback and early
detection of issues.

Cucumber

Cucumber is an open-source software tool used for Behavior-Driven Development
(BDD). It provides a framework for writing and executing automated tests in a
human-readable format.

Cucumber uses a plain-text syntax called Gherkin to express the behavior of the
system in terms of scenarios and steps.

Gherkin

Gherkin is a structured language that is easy to understand by both technical and
non-technical stakeholders. It allows for the creation of feature files that describe
the functionality of the software in a business-readable format.

Gherkin uses a set of special keywords to give structure and meaning to
executable specifications.

Each keyword is translated to many spoken languages.

https://cucumber.io/docs/gherkin/reference/#keywords

Keywords

Feature :The purpose of the Feature keyword is to provide a high-level
description of a software feature, and to group related scenarios.

Scenario: Describes a specific test scenario, typically written as "Scenario:
<scenario-name>". It represents a particular use case or interaction with the
system.

Given: Specifies the preconditions or initial state of the system for a scenario,
written as "Given <precondition>". It sets up the necessary context before the
action takes place.

When: Represents the specific action or event that is being performed in the
scenario, written as "When <action>". It captures the user's interaction or system
event.

Then: Defines the expected outcome or behavior that should result from the action,
written as "Then <expected-outcome>". It describes the expected state or response
after the action is performed.
And, But: These keywords are used to add additional steps within a scenario. "And"
is used when the step adds to the previous step's context, while "But" is used to
contrast or contradict the previous step.
Scenario Outline: Allows the definition of a scenario template that can be reused
with different inputs or data sets. It uses placeholders (e.g., "<placeholder>") to
represent variables that are filled in with concrete values in the examples table.
Examples: Provides a tabular structure to define multiple sets of inputs and
expected outcomes for a scenario outline. Each row represents a different
combination of inputs and expected outcomes.

Feature: Is it friday

 Feature Description

 Scenario: Is it friday

 Given today is Friday

 When I ask some whether it is friday yet

 Then I should be told Friday

Step Definition

Step definitions connect Gherkin steps to programming code. A step definition
carries out the action that should be performed by the step. So step definitions
hard-wire the specification to the implementation.

Gherkin Steps Step
Definitions System

Match with Manipulates

Advantage of BDD
❖ Improved Collaboration
❖ Greater Clarity
❖ Reduced Costs
❖ Enhanced Test Coverage
❖ Faster Feedback

Disadvantage of BDD
❖ BDD requires high business engagement and collaboration
❖ BDD doesn’t work well in a silo
❖ Add extra complexity
❖ Time and Effort for developing feature files,writing scenarios

Conclusion
Overall ,Behaviour-Driven Development provides a structural framework for
effective collaboration,communication and Quality assurance,resulting in software
tha better aligned with user needs and business objective.

End!

