
RTK-Query

• Addis-Software Course

Overview

● Introduction

● Cache Behavior

● Queries

● Mutations

● Code Splitting

● Comparison With Saga

● Conditional Fetching

● Polling, Streaming Update

● Code Generation

● Error Handling

Introduction

RTK Query

● Is a powerful data fetching and caching tool.

● It is designed to simplify common cases for loading data in a web application, eliminating the need to hand-write data fetching

& caching logic yourself.

● It is an optional addon included in the Redux Toolkit package, and its functionality is built on top of the other APIs in Redux

Toolkit, This mean no need to add any package if you have redux-toolkit already installed.

Motivation

As we all know web applications normally need to do the following

● Fetch data from a server in order to display it.

● They also usually need to make updates to that data,

● Keep the cached data on the client in sync with the data on the server.

○ This is made more complicated by the need to implement other behaviors used in today's applications:

Intro…

Where RTK-Query Shines The Most

● Tracking loading state in order to show UI spinners

● Avoiding duplicate requests for the same data

● Optimistic updates to make the UI feel faster

● Managing cache lifetimes as the user interacts with the UI

● Streaming Updates

● Code Generation

● Code Splitting

Intro…

We have to realize that "data fetching and caching" is really a different set of
concerns than "state management".

Intro…

While you can use a state management library like Redux to cache data, but the
use cases are different enough that it's worth using tools that are purpose-built

for the data fetching use case.

What's included

API

import { createApi } from '@reduxjs/toolkit/query'

/* React-specific entry point that automatically generates

 hooks corresponding to the defined endpoints */

import { createApi } from '@reduxjs/toolkit/query/react'

What's included

● createApi(): The core of RTK Query's functionality. It allows you to define a set of "endpoints" that describe how to

retrieve data from backend APIs and other async sources, including the configuration of how to fetch and transform

that data.

○ In most cases, you should use this once per app

● fetchBaseQuery(): A small wrapper around fetch that aims to simplify requests. Intended as the recommended

baseQuery to be used in createApi for the majority of users.

● <ApiProvider />: Can be used as a Provider if you do not already have a Redux store.

● setupListeners(): A utility used to enable refetchOnMount and refetchOnReconnect behaviors.

Cache Behavior

When data is fetched from the server, RTK Query will store the data in the Redux store as a

'cache'. When an additional request is performed for the same data, RTK Query will provide the

existing cached data rather than sending an additional request to the server.

Cache Behavior

Default Cache Behavior

With RTK Query, caching is based on:

● API endpoint definitions
● The query parameters used when components subscribe to data from an endpoint

○ When a subscription is started, the parameters used with the endpoint are serialized and stored
internally as a queryCacheKey for the request

● Active subscription reference counts

Cache lifetime & subscription example

● 60 sec is the default life time for the cache

● Active Subscription Count

● Go to Example

Root Service, And Code
Splitting

Query endpoints are defined by returning an object inside
the endpoints section of createApi, and defining the
fields using the builder.query() method.

import { createApi, fetchBaseQuery } from
'@reduxjs/toolkit/query/react';
import { API_ROUTE } from 'utils/constants';

// initialize an empty api service that we'll inject
endpoints into later as needed
export const rootService = createApi({
 baseQuery: fetchBaseQuery({ baseUrl: API_ROUTE }),
 endpoints: () => ({}),
 tagTypes: ['Carts', 'Cart'],
});

Adding It To Reducer
Config

Adding The Root Reducer To The Store

import { rootService } from './service';

export function createReducer(injectedReducers:
InjectedReducersType = {}) {
if (Object.keys(injectedReducers).length === 0) {
return (state: any) => state;
}
return combineReducers({
...injectedReducers,

 [rootService.reducerPath]: rootService.reducer,
});
}

Adding It To Store
Config

Adding The Root Reducer To The Store

const store = configureStore({
reducer: createReducer(),
middleware: [
...getDefaultMiddleware({
serializableCheck: false,
}),
...middlewares,
].concat(rootService.middleware),
devTools: import.meta.env.NODE_ENV !==
'production',
enhancers,
});

Queries

Query endpoints are defined by returning an object inside
the endpoints section of createApi Or Injecting It
to The RootService, and defining the fields using the
builder.query() method.

import { rootService } from 'store/service';

const cartApi = rootService.injectEndpoints({
 endpoints: build => ({
 getCart: build.query({
 query: () => '/carts',
 }),
}),
 overrideExisting: false,
});

export const { useGetCartQuery } = cartApi;

Queries Usage

import { rootService } from 'store/service';

const cartApi = rootService.injectEndpoints({
 endpoints: build => ({
 getCart: build.query<ICartModel, void>({
 query: () => '/carts',
 }),
}),
 overrideExisting: false,
});

export const { useGetCartQuery } = cartApi;

Queries Usage

import { rootService } from 'store/service';

const cartApi = rootService.injectEndpoints({
 endpoints: build => ({
 getCart: build.query<ICartModel, void>({
 query: () => '/carts',
 transformResponse: (response: { data: ICartModel
},meta, arg) =>
 response.data,
 providesTags: ['Carts'],
 }),
}),
 overrideExisting: false,
});

export const { useGetCartQuery } = cartApi;

Queries Usage

const {
data, // Type Is ICartModel
error,
isFetching,
isError,
isSuccess,
isLoading,
refetch,
originalArgs,
fulfilledTimeStamp,
startedTimeStamp,
} = useGetCartQuery();

Avoiding unnecessary requests

By default, if you add a component that makes the same query as an existing one, no request will be

performed.

In some cases, you may want to skip this behavior and force a refetch - in that case, you can call refetch

that is returned by the hook.

Selecting Data

● Using createSelector

 const rootCart = cartApi.endpoints.getCart.select();
 export const selectCartApiData = createSelector(
 [rootCart],state => state.data);

● Use transformResponse
○ All consumers of the endpoint want a specific format, such as normalizing the response to enable faster

lookups by ID
● Or use useMemo

○ when only some specific components need to transform the cached data

Mutation

const cartApi = rootService.injectEndpoints({
 endpoints: build => ({
 getCart: build.query<ICartModel, void>({
 query: () => routes.carts.get,
 providesTags: ['Carts'],
 }),
 addToCart: build.mutation<ISampleModel, string>({
 query: sample => ({
 url: routes.carts.get,
 method: 'POST',
 body: sample,
 }),
 invalidatesTags: ['Carts'],
 }),
 }),
 overrideExisting: false,
});

Conditional Fetching, Polling
Query hooks automatically begin fetching data as soon as the component is mounted. But, there are use cases where
you may want to delay fetching data until some condition becomes true. RTK Query supports conditional fetching to
enable that behavior.

If you want to prevent a query from automatically running, you can use the skip parameter in a hook.

1.Conditional
const {data, isFetching} = useGetCartQuery(undefined, {
 skip:true
});

2.Polling
const {data, isFetching} = useGetCartQuery(undefined, {
 pollingInterval:true
});

Streaming Updates Go to VSCode

Refetching

● refetch()

○ const { data, refetch } =

useGetCartQuery(3);

● Re-fetching on window focus with refetchOnFocus
● Re-fetching on network reconnection with

refetchOnReconnect

Note: Just Add:- setupListeners(store.dispatch);

END Thanks for your Time

