
CACHING

By: Robel Shewangzaw

caching is hardware or software component that stores data temporarily
to serve future requests more quickly.

CACHING

Memory Hierarchy Levels

Cache Replacement Algorithms

Least Recently Used (LRU) : a memory storage system that removes the least recently used

items when full, keeping the most recently accessed items for quicker retrieval.

Cache Replacement Algorithms

Least Frequently Used(LFU) : a memory storage system that prioritizes keeping
items that are accessed the least frequently, removing them when the cache is full to make room
for more frequently accessed items.

Cache Replacement Algorithms

First In First Out (FIFO) : A memory storage system that removes the oldest
items first when the cache is full. Maintaining the order in which items were initially.

➔ Better performance

◆ System loads faster

➔ Better scalability

◆ Limit bottlenecks in a system

➔ Better robustness

◆ Can support more load

 Why We use Cache

 Caching
 Terminology

[Cache Scavenging]
deleting items from the cache when
memory is scarce

[Local Cache]
caching data on clients rather than
on servers

[Distributed Cache]
extension of the traditional concept of
cache that may span multiple servers

[Cache Hit]
when requested data is contained in
the cache

[Cache Miss]
when requested not in the cached, has
to be recomputed or fetched from
original storage

[Cache Key]
unique identifier for a data item in the
cache

[Expiration]
item expires at a specific date
(absolute), specifies how long after an
item was last accessed that is expires

❑ Client Caching
 - browser caches URLs,HTML,CSS ,images for future uses
 - Mozilla Firefox, Google Chrome

❑ Server-side Caching
- server side cache reduces load on server

 - File System Cache
 - In-Memory Cache (MemCached, Redis)

Types of Caching

Client side Caching

Client side caching, (browse caching): is a web-caching process that temporarily stores
the copy of a web page in the browser memory instead of the cache memory in their server.

❖ Web browsers to store HTML, Pages, images, CSS files and other multimedia files of a
website locally. Improving performance by service cached content instead of fetching it from
the server for subsequent visits.

Types of Client Side Caching

❖ HTTP Caching: storing web resources on the client side or proxy servers to improve
performance by serving cached content instead of fetching it from the origin server for
subsequent request

 HTTP Caching Example

async function fetchData() {
 try {
 // Making an HTTP GET request to fetch data

 const response = await fetch('https://api.example.com/data', {
 // Specify caching behavior using headers
 headers: { },
 });

 if (!response.ok) {
 throw new Error('Failed to fetch data');
 }

 // Extracting JSON data from the response
 const jsonData = await response.json();
 setData(jsonData);
 } catch (error) {
 console.error('Error fetching data:', error);
 }
}

A few example of headers and their role in caching
websites

● Cach-control
● Expires
● Pragma (no-cache)
● Etag
● Private / public
● No-store
● max-age

Types of Client side Caching

❖ Service workers: is a script that your browser runs in the background , separate from a
web page, enabling feature like push notification, background sync, or most relevantly , the ability
to cache resources for offline use or faster retrieval.

Pros of Client side caching

Cons of Client side Caching

● Storage Limitation
● Stale data
● Security Risks

● Reduced server load
● Faster load times
● Offline access
● Improved performance

Server Side Caching

Server side caching: stores precomputed or frequently accessed data on the server, reducing
processing time and improving response speed for web applications.

How to use

● Works without any additional server
most of the CMS by default use File
cache without any configuration

● Need to install and configure server

● Need to client library to access cache

● Most of the popular framework has very
good built-in for third party library

● Example Redis, memcached,....

[File System Caching] [In-Memory cache]

 In-Memory means We are
 Bound By RAM

 Introduction of Redis

● Redis is open source, In-Memory data structure can be used as
database, cache, message broker.

● NoSQL Key/Value store

● It is support atomic operation, ensuring that certain command or
transaction are executed as a single indivisible unit , without
interference from other clients

● Most operation have a time complexity of O(1),

Caching with Redis
Const redisClient = Redis.createClient({

});

(async () => {

 redisClient.on("error", (err) => {

 console.log("Redis Client Error", err);

 });

 redisClient.on("ready", (value) => console.log("Redis is ready", value));

 await redisClient.connect();

 const pong = await redisClient.ping();

})();

Optimization of Server side Caching

● Use Redis Data structure wisely : Optimize data storage using redis structure

● Set TTL(Time-to-Live) for Keys : implement time based key expiration for data freshness

● Implement cache invalidation: use a efficient mechanism to update cached data

● Optimize memory usage: monitor and manage memory for efficient caching

 QUESTIONS / COMMENTS ..

