
Security Testing

Topics
1. What is Software Testing

2. Key principles of security testing

3. Understanding importance of testing

4. Types Of Security Testing

5. Security Test Cases and Scenarios

6. Security Testing Approaches

7. Security Testing Tools

8. Common JavaScript Security Vulnerabilities

9. Javascript Security Testing Best Practices

What is security testing?

Security testing is a process of evaluating a system or application to

identify and address potential vulnerabilities and security risks. It

involves assessing the security posture of the system by simulating

attacks, analyzing security controls, and identifying weaknesses that

could be exploited by attackers. The primary goal of security testing is to

ensure that the system or application is resilient to security threats and

meets security requirements.

Key principles of security testing

1. Confidentiality

2. Integrity

3. Authentication

4. Authorization

5. Availability

Understanding importance of Security testing

● Risk Reduction

● Customer Satisfaction

● Cost Savings

● Performance Validation

● Bug Detection

● Quality Assurance

● Identifying Vulnerabilities

Types Of Security Testing

Penetration Testing (Ethical Hacking)

Penetration testing is the process of stimulating real-life cyber attacks

against an application, software, system, or network under safe

conditions. It can help evaluate how existing security measures will

measure up in a real attack. Most importantly, penetration testing can

find unknown vulnerabilities, including zero-day threats and business

logic vulnerabilities.

Application Security Testing (AST)

Application security testing describes methods organizations can use to

find and eliminate vulnerabilities in software applications. These methods

involve testing, analyzing, and reporting on the security posture of a

software application throughout the software development lifecycle

(SDLC).

Web Application Security Testing

Web application penetration testing aims to gather information about a

web application, discover system vulnerabilities or flaws, investigate the

success of exploiting these flaws or vulnerabilities, and evaluate the risk

of web application vulnerabilities.

API Security Testing

API security testing helps identify vulnerabilities in application

programming interfaces (APIs) and web services, and assist developers in

remediating those vulnerabilities. APIs provide access to sensitive data,

and attackers can use them as an entry point to internal systems. Testing

APIs rigorously and regularly can protect them from unauthorized access

and abuse.

Vulnerability Management

Vulnerability management is a continuous process that enables an

organization to identify, assess, report, manage, and remediate security

vulnerabilities across endpoints, workloads, and networks. Security

teams typically use vulnerability scanning tools to detect vulnerabilities

and implement manual or automatic processes to fix them.

Configuration Scanning

Security scanning, also known as configuration scanning, is the process of

identifying misconfigurations of software, networks and other computing

systems. This type of scanning typically checks systems against a list of

best practices, specified by research organizations or compliance

standards.

Security Audits

A security audit is a structured process for reviewing/auditing an

application/software according to a defined standard. Audits usually

involve reviews of code or architectures in light of security requirements,

analyzing security gaps, and assessing the security posture of hardware

configurations, operating systems, and organizational practices. It also

evaluates compliance with regulations and compliance standards.

Security Testing Approaches

Black Box Testing- is where the security tester evaluates a system’s

security from the outside without knowing the internal processes

generating responses

White Box Testing - In white box testing, the tester designs test cases and

tests based on the software’s source code.

Gray Box Testing- is a hybrid of white box and black box testing

Security Testing Tools

Static Application Security Testing (SAST)

Dynamic Application Security Testing (DAST)

Static Application Security Testing (SAST)

SAST tools assess the source code while at rest. The purpose of SAST is

to identify exploitable flaws and provide a detailed report including

findings and recommendations.

You can run SAST to detect issues in source code, to detect issues such

as input validation, numerical errors, path traversals, and race

conditions. SAST can also be used on compiled code, but this requires

binary analyzers.

Dynamic Application Security Testing (DAST)

DAST tools examine the application during runtime. The purpose of

DAST is to detect exploitable flaws in the application while it is running,

using a wide range of attacks.

You can run DAST checks to check a wide range of components,

including scripting, sessions, data injection, authentication, interfaces,

responses, and requests

Common JavaScript Security Vulnerabilities
Cross-Site Scripting (XSS)

Cross-Site Request Forgery

Injection attacks

Sensitive Data Exposure

DoS attacks

Client-Side Validation Bypass

Javascript Security Testing Best Practices
Code Review and Static Analysis - Regularly review the codebase for

security vulnerabilities. Tools like ESLint, SonarQube, or CodeQL can help

identify potential issues statically.

Ensure that sensitive information like API keys, passwords, and tokens

are not hard-coded in the source code.

Javascript Security Testing Best Practices
Input Validation and Sanitization - Validate and sanitize all user inputs

to prevent injection attacks such as SQL injection, NoSQL injection, and

Cross-Site Scripting (XSS).

Use libraries like express-validator or Joi to validate and sanitize input

data.

Javascript Security Testing Best Practices
Authentication and Authorization - Implement secure authentication

mechanisms like JSON Web Tokens (JWT) for user authentication.

Ensure proper authorization checks are in place to restrict access to

resources based on user roles and permissions.

Javascript Security Testing Best Practices
Secure Communication - Use HTTPS protocol to encrypt data

transmitted between the client and server.

Implement Cross-Origin Resource Sharing (CORS) policies to restrict

unauthorized access to resources.

Javascript Security Testing Best Practices
Database Security - Use parameterized queries or ORM libraries with

built-in protection against SQL injection attacks.

Apply the principle of least privilege by granting minimal permissions

required for database access.

Javascript Security Testing Best Practices
Database Security - Use parameterized queries or ORM libraries with

built-in protection against SQL injection attacks.

Apply the principle of least privilege by granting minimal permissions

required for database access.

Javascript Security Testing Best Practices
File Upload Security - Validate file uploads to prevent malicious files from

being uploaded.

Restrict file types and sizes based on application requirements.

Store uploaded files outside the web root directory to prevent direct

access.

Javascript Security Testing Best Practices
Error Handling - Implement proper error handling to avoid leaking

sensitive information to attackers.

Use generic error messages to avoid exposing implementation details to

users.

Javascript Security Testing Best Practices
Dependency Management - Regularly update dependencies to patch

security vulnerabilities.

Use tools like npm audit or Snyk to scan for known vulnerabilities in npm

packages.

Javascript Security Testing Best Practices
Penetration Testing - Conduct regular penetration testing to identify and

mitigate security weaknesses.

Utilize tools like OWASP ZAP or Burp Suite for automated security

testing.

Thank you !!!

