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Welcome to the vue.js cross…



Before Introduction to 

Vue.js
Declarative Programming: "What" Should be 

Done
Imperative Programming: “How” Should be Done



Introduction to Vue.js

A. What is Vue.js?

B. Why use Vue.js?

C. Setting up a Vue.js project



B. Why vue.js

1. Easy learning curve

2. Scalability
3. Component-based architecture

4. Reactive data binding

5. Community and ecosystem

6. Incremental adoption

7. Performance

8. Active development



Vue Fun Facts

● Vue released 10 years ago
● Version names are often derived from 

manga and anime.
● Vue only weight 33.9kb
● Vue was created by Evan You after working for 

Google using AngularJS in several projects

https://en.wikipedia.org/wiki/Manga
https://en.wikipedia.org/wiki/Anime
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/AngularJS


Vue 3.4



Setting up a Vue.js project

1. Using Vue CLI
npm install -g @vue/cli
vue create project-name

2. Using create vue command

npm create vue@latest

Vue.js - The Progressive JavaScript Framework

✔ Project name: … vue-project
✔ Add TypeScript? … No / Yes
✔ Add JSX Support? … No / Yes
✔ Add Vue Router for Single Page Application development? … No / Yes
✔ Add Pinia for state management? … No / Yes
✔ Add Vitest for Unit Testing? … No / Yes
? Add an End-to-End Testing Solution? › - Use arrow-keys. Return to submit.
    No
    Cypress
    Nightwatch
❯   Playwright



Components

● In Vue.js, components are reusable and self-contained units of code that encapsulate HTML, 
CSS, and JavaScript logic.

● Recommended ways to create theme are by defining them as Single File Components (.vue 
files).



Example

// Welcome.vue
<script setup lang="ts">

defineProps<{
 msg: string
}>()

</script>

<template>
 <div class="greetings">
   <h1 class="green">{{ msg }}</h1>
   <h3>
     You’ve successfully created a project with
    </h3>
 </div>
</template>

<style scoped>
</style>



Importing a component

// HomePage.vue
<script setup lang="ts">

      import Welcome from './Welcome.vue'
</script>

<template>
  <TheWelcome />
</template>



Rendering component dynamically

=> Since components are referenced as variables we should use the :is binding to render component dynamically

<script setup>
import Foo from './Foo.vue'
import Bar from './Bar.vue'
</script>

<template>
  <component :is="Foo" /> // Equivalent with <Foo/>
  <component :is="someCondition ? Foo : Bar" />
</template>



Component life cycles



● Some commonly used lifecycle hooks include:
● beforeCreate: Called before the instance is created.
● created: Called after the instance is created. Data observation and event initialization occur 

here.
● beforeMount: Called right before the component is mounted to the DOM.
● mounted: Called after the component is mounted to the DOM.
● beforeUpdate: Called when data changes, before the DOM is re-rendered.
● updated: Called after a data change causes the DOM to be re-rendered.
● beforeDestroy: Called right before a component is destroyed.
● destroyed: Called after a component is destroyed.



Hell No

Are you crazy who is going to 
remember all of this?



We got you covered

Don’t worry



Composition 
API



Composition API

<script>
import { ref } from 'vue'

export default {
  setup() {
    const count = ref(0)

    // expose to template and other options API hooks
    return {
      count
    }
  },

  mounted() {
    console.log(this.count) // 0
  }
}
</script>

<template>
  <button @click="count++">{{ count }}</button>
</template>



Composition API

Wait a minute I am confused.

Somethings need to be clear before continuing…

If you were focusing 😀, which you don’t, we were seeing two 
type of script setups.



Composition API

First One 
<script>
import { ref } from 'vue'

export default {
  setup() {
    const count = ref(0)

    // expose to template and other options API hooks
    return {
      count
    }
  },

  mounted() {
    console.log(this.count) // 0
  }
}
</script>



Composition API

Second One 

<script setup>
import { ref } from 'vue'

// No need to export it, it will automatically be exposed to the template scope. 
const count = ref(0)

</script>

=> This one is the recommended way of using script tag if you are 
using a SFC(Single File Component)(i.e. .vue files), which usually 
you will.



Templates and Directives

Template Syntax
Vue uses an HTML-based template syntax that allows you to declaratively bind the rendered DOM to the 

underlying component instance data.

Under the hood, Vue compiles 

Templates 🟰  Highly-optimized JavaScript code ➕ Combined with the reactivity system

E.g. <span>count: {{ count }}</span>



Templates and Directives

Attribute Binding
Before we move in to a separate section on directive, we have to cross by some of the vue.js magics…

<div v-bind:id="dynamicId"></div>

// Shorthand
<div :id="dynamicId"></div>

//same-name shorthand
<!-- same as :id="id" -->
<div :id></div>

Binding Multiple Attributes

const attrs = {

  id: 'container',
  class: 'wrapper'
}
<div v-bind="attrs"></div>



Templates and Directives

Directives
A directive's job is to reactively apply updates to the DOM when the value of its expression changes.

Take v-if as an example: 

<p v-if="seen">Now you see me</p>

Here, the v-if directive would remove / insert the <p> element based on the truthiness of the value of the 

expression seen.

Some directive can take an argument for example

v-bind, v-on

E.g.  <a v-bind:href="url"> ... </a>

<!-- shorthand →

<a :href="url"> ... </a>

<a v-on:click="doSomething"> ... </a>

<!-- shorthand -->

<a @click="doSomething"> ... </a>

https://vuejs.org/api/built-in-directives.html#v-if


Templates and Directives

Directives
Dynamic argument

<a :[attributeName]="url"> ... </a>

<a @[eventName]="doSomething"> ... </a> // e.g. if eventName is focus will be equivalent to 

v-on:focus

Modifiers
Modifiers are special postfixes denoted by a dot, which indicate that a directive should be bound in some special way

<form @submit.prevent="onSubmit">...</form>



Templates and Directives

Built In Directives
v-text 🟰  <span v-text="msg">...</span>

v-show 🟰  <span v-show="show">...</span>

v-if & v-else-if & v-else 🟰  

<div v-if="see">
  Now you see me
</div>
<div v-else>
  Now you don't
</div>



Templates and Directives

Built In Directives
v-for

Expects: Array | Object | number | string | 

Iterable

<div v-for="item in items">
  {{ item.text }}
</div>

<div v-for="(value, key) in object"></div>

v-once

Render the element and component once only, and skip future 

updates.

On subsequent re-renders, the element/component and all its 

children will be treated as static content and skipped. This can 

be used to optimize update performance.

Best if you are using content management system

<span v-once>This will never change: {{msg}}</span>

Can be use both in Element and Component



Templates and Directives

Built In Directives
v-memo
Expects: any[]

1. Memoize a sub-tree of the template.

2. v-memo is provided solely for micro optimizations in performance-critical scenarios and should be rarely needed.

The v-memo usage here is essentially saying "only update this item if it went from non-selected to selected, or the 

other way around". This allows every unaffected item to reuse its previous VNode and skip diffing entirely. 

<div v-for="item in list" :key="item.id" v-memo="[item.id === selected]">
  <p>ID: {{ item.id }} - selected: {{ item.id === selected }}</p>
  <p>...more child nodes</p>
</div>



Templates and Directives

Directives



Built In Directive Reference

https://vuejs.org/api/built-in-directives.html#v-bind


Routing in vue

Vue has its own official routing package.

 createWebHistory
● allow you to have clean and SEO-friendly URLs 

You take a look at the about route, this is how you use 
code spliting in vue.js…

import { createRouter, createWebHistory } from 
'vue-router'
import HomeView from '../views/HomeView.vue'

const router = createRouter({
 history: createWebHistory(import.meta.env.BASE_URL),
 routes: [
   {
     path: '/',
     name: 'home',
     component: HomeView
   },
   {
     path: '/about',
     name: 'about',
     // route level code-splitting
     // this generates a separate chunk 
(About.[hash].js) for this route
     // which is lazy-loaded when the route is 
visited.
     component: () => 
import('../views/AboutView.vue')
   }
 ]
})
export default router



State Management

State Management with Reactivity API

// store.js
import { reactive } from 'vue'

export const store = reactive({
  count: 0
})

> With action
// store.js
import { reactive } from 'vue'

export const store = reactive({
  count: 0,
  increment() {
    this.count++
  }
})



State Management

State Management with Reactivity API

 Usage

<script setup>
import { store } from './store.js'
</script>

<template>
  <button @click="store.increment()">
    {{ store.count }}
  </button>
</template>



State Management With Pinia Store

Pinia
The intuitive store for Vue.js 

● Type Safe 
● Extensible, and 
● Modular by design. 
● Stronger conventions for team collaboration
● Integrating with the Vue DevTools, including 

timeline, in-component inspection, and 
time-travel debugging

● Hot Module Replacement
● Server-Side Rendering support

The recommended way to manage your states,
…Vue core team… 



Advance vue concepts
Performance Optimization

Code Splitting and Lazy Loading:

● In Vue.js, you can use dynamic imports (import()) like we see in the router section. 

Virtual Scrolling:
●

Virtual scrolling is a technique that only renders the visible elements in a list instead of rendering all.
● Vue.js has a built-in <VirtualScroller>  component that you can use to implement virtual scrolling in your 

application.
Directives:

● Vue's directives, like v-once, v-memo, and v-lazy, can help you optimize the performance of 
your application.

● The v-once directive, for example, can be used to render an element only once, which can 
be useful for static content.

● The v-memo directive can be used to memoize the rendering of a component, which can be 
useful for expensive computations.

● The v-lazy used to lazy load components or resources, 



I Thank You All For Steaking With Me This Long

…If you have a quetion please don’t ask…


