
. JS

Welcome to the vue.js cross…



Outline
I. Introduction to Vue.js
II. Vue.js Basics

A. Components
1. Creating components
2. Component lifecycle hooks

B.Composition API
C. Templates and Directives

1. Template syntax
2. Directives (v-if, v-for, v-bind, v-on) And Data Binding

III. Vue Router
IV. State Management
V. Advance vue concepts

A.Performance optimization techniques



Welcome to the vue.js cross…



Before Introduction to 

Vue.js
Declarative Programming: "What" Should be 

Done
Imperative Programming: “How” Should be Done



Introduction to Vue.js

A. What is Vue.js?

B. Why use Vue.js?

C. Setting up a Vue.js project



B. Why vue.js

1. Easy learning curve

2. Scalability
3. Component-based architecture

4. Reactive data binding

5. Community and ecosystem

6. Incremental adoption

7. Performance

8. Active development



Vue Fun Facts

● Vue released 10 years ago
● Version names are often derived from 

manga and anime.
● Vue only weight 33.9kb
● Vue was created by Evan You after working for 

Google using AngularJS in several projects

https://en.wikipedia.org/wiki/Manga
https://en.wikipedia.org/wiki/Anime
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/AngularJS


Vue 3.4



Setting up a Vue.js project

1. Using Vue CLI
npm install -g @vue/cli
vue create project-name

2. Using create vue command

npm create vue@latest

Vue.js - The Progressive JavaScript Framework

✔ Project name: … vue-project
✔ Add TypeScript? … No / Yes
✔ Add JSX Support? … No / Yes
✔ Add Vue Router for Single Page Application development? … No / Yes
✔ Add Pinia for state management? … No / Yes
✔ Add Vitest for Unit Testing? … No / Yes
? Add an End-to-End Testing Solution? › - Use arrow-keys. Return to submit.
    No
    Cypress
    Nightwatch
❯   Playwright



Components

● In Vue.js, components are reusable and self-contained units of code that encapsulate HTML, 
CSS, and JavaScript logic.

● Recommended ways to create theme are by defining them as Single File Components (.vue 
files).



Example

// Welcome.vue
<script setup lang="ts">

defineProps<{
 msg: string
}>()

</script>

<template>
 <div class="greetings">
   <h1 class="green">{{ msg }}</h1>
   <h3>
     You’ve successfully created a project with
    </h3>
 </div>
</template>

<style scoped>
</style>



Importing a component

// HomePage.vue
<script setup lang="ts">

      import Welcome from './Welcome.vue'
</script>

<template>
  <TheWelcome />
</template>



Rendering component dynamically

=> Since components are referenced as variables we should use the :is binding to render component dynamically

<script setup>
import Foo from './Foo.vue'
import Bar from './Bar.vue'
</script>

<template>
  <component :is="Foo" /> // Equivalent with <Foo/>
  <component :is="someCondition ? Foo : Bar" />
</template>



Component life cycles



● Some commonly used lifecycle hooks include:
● beforeCreate: Called before the instance is created.
● created: Called after the instance is created. Data observation and event initialization occur 

here.
● beforeMount: Called right before the component is mounted to the DOM.
● mounted: Called after the component is mounted to the DOM.
● beforeUpdate: Called when data changes, before the DOM is re-rendered.
● updated: Called after a data change causes the DOM to be re-rendered.
● beforeDestroy: Called right before a component is destroyed.
● destroyed: Called after a component is destroyed.



Hell No

Are you crazy who is going to 
remember all of this?



We got you covered

Don’t worry



Composition 
API



Composition API

<script>
import { ref } from 'vue'

export default {
  setup() {
    const count = ref(0)

    // expose to template and other options API hooks
    return {
      count
    }
  },

  mounted() {
    console.log(this.count) // 0
  }
}
</script>

<template>
  <button @click="count++">{{ count }}</button>
</template>



Composition API

Wait a minute I am confused.

Somethings need to be clear before continuing…

If you were focusing 😀, which you don’t, we were seeing two 
type of script setups.



Composition API

First One 
<script>
import { ref } from 'vue'

export default {
  setup() {
    const count = ref(0)

    // expose to template and other options API hooks
    return {
      count
    }
  },

  mounted() {
    console.log(this.count) // 0
  }
}
</script>



Composition API

Second One 

<script setup>
import { ref } from 'vue'

// No need to export it, it will automatically be exposed to the template scope. 
const count = ref(0)

</script>

=> This one is the recommended way of using script tag if you are 
using a SFC(Single File Component)(i.e. .vue files), which usually 
you will.



Templates and Directives

Template Syntax
Vue uses an HTML-based template syntax that allows you to declaratively bind the rendered DOM to the 

underlying component instance data.

Under the hood, Vue compiles 

Templates 🟰  Highly-optimized JavaScript code ➕ Combined with the reactivity system

E.g. <span>count: {{ count }}</span>



Templates and Directives

Attribute Binding
Before we move in to a separate section on directive, we have to cross by some of the vue.js magics…

<div v-bind:id="dynamicId"></div>

// Shorthand
<div :id="dynamicId"></div>

//same-name shorthand
<!-- same as :id="id" -->
<div :id></div>

Binding Multiple Attributes

const attrs = {

  id: 'container',
  class: 'wrapper'
}
<div v-bind="attrs"></div>



Templates and Directives

Directives
A directive's job is to reactively apply updates to the DOM when the value of its expression changes.

Take v-if as an example: 

<p v-if="seen">Now you see me</p>

Here, the v-if directive would remove / insert the <p> element based on the truthiness of the value of the 

expression seen.

Some directive can take an argument for example

v-bind, v-on

E.g.  <a v-bind:href="url"> ... </a>

<!-- shorthand →

<a :href="url"> ... </a>

<a v-on:click="doSomething"> ... </a>

<!-- shorthand -->

<a @click="doSomething"> ... </a>

https://vuejs.org/api/built-in-directives.html#v-if


Templates and Directives

Directives
Dynamic argument

<a :[attributeName]="url"> ... </a>

<a @[eventName]="doSomething"> ... </a> // e.g. if eventName is focus will be equivalent to 

v-on:focus

Modifiers
Modifiers are special postfixes denoted by a dot, which indicate that a directive should be bound in some special way

<form @submit.prevent="onSubmit">...</form>



Templates and Directives

Built In Directives
v-text 🟰  <span v-text="msg">...</span>

v-show 🟰  <span v-show="show">...</span>

v-if & v-else-if & v-else 🟰  

<div v-if="see">
  Now you see me
</div>
<div v-else>
  Now you don't
</div>



Templates and Directives

Built In Directives
v-for

Expects: Array | Object | number | string | 

Iterable

<div v-for="item in items">
  {{ item.text }}
</div>

<div v-for="(value, key) in object"></div>

v-once

Render the element and component once only, and skip future 

updates.

On subsequent re-renders, the element/component and all its 

children will be treated as static content and skipped. This can 

be used to optimize update performance.

Best if you are using content management system

<span v-once>This will never change: {{msg}}</span>

Can be use both in Element and Component



Templates and Directives

Built In Directives
v-memo
Expects: any[]

1. Memoize a sub-tree of the template.

2. v-memo is provided solely for micro optimizations in performance-critical scenarios and should be rarely needed.

The v-memo usage here is essentially saying "only update this item if it went from non-selected to selected, or the 

other way around". This allows every unaffected item to reuse its previous VNode and skip diffing entirely. 

<div v-for="item in list" :key="item.id" v-memo="[item.id === selected]">
  <p>ID: {{ item.id }} - selected: {{ item.id === selected }}</p>
  <p>...more child nodes</p>
</div>



Templates and Directives

Directives



Built In Directive Reference

https://vuejs.org/api/built-in-directives.html#v-bind


Routing in vue

Vue has its own official routing package.

 createWebHistory
● allow you to have clean and SEO-friendly URLs 

You take a look at the about route, this is how you use 
code spliting in vue.js…

import { createRouter, createWebHistory } from 
'vue-router'
import HomeView from '../views/HomeView.vue'

const router = createRouter({
 history: createWebHistory(import.meta.env.BASE_URL),
 routes: [
   {
     path: '/',
     name: 'home',
     component: HomeView
   },
   {
     path: '/about',
     name: 'about',
     // route level code-splitting
     // this generates a separate chunk 
(About.[hash].js) for this route
     // which is lazy-loaded when the route is 
visited.
     component: () => 
import('../views/AboutView.vue')
   }
 ]
})
export default router



State Management

State Management with Reactivity API

// store.js
import { reactive } from 'vue'

export const store = reactive({
  count: 0
})

> With action
// store.js
import { reactive } from 'vue'

export const store = reactive({
  count: 0,
  increment() {
    this.count++
  }
})



State Management

State Management with Reactivity API

 Usage

<script setup>
import { store } from './store.js'
</script>

<template>
  <button @click="store.increment()">
    {{ store.count }}
  </button>
</template>



State Management With Pinia Store

Pinia
The intuitive store for Vue.js 

● Type Safe 
● Extensible, and 
● Modular by design. 
● Stronger conventions for team collaboration
● Integrating with the Vue DevTools, including 

timeline, in-component inspection, and 
time-travel debugging

● Hot Module Replacement
● Server-Side Rendering support

The recommended way to manage your states,
…Vue core team… 



Advance vue concepts
Performance Optimization

Code Splitting and Lazy Loading:

● In Vue.js, you can use dynamic imports (import()) like we see in the router section. 

Virtual Scrolling:
●

Virtual scrolling is a technique that only renders the visible elements in a list instead of rendering all.
● Vue.js has a built-in <VirtualScroller>  component that you can use to implement virtual scrolling in your 

application.
Directives:

● Vue's directives, like v-once, v-memo, and v-lazy, can help you optimize the performance of 
your application.

● The v-once directive, for example, can be used to render an element only once, which can 
be useful for static content.

● The v-memo directive can be used to memoize the rendering of a component, which can be 
useful for expensive computations.

● The v-lazy used to lazy load components or resources, 



I Thank You All For Steaking With Me This Long

…If you have a quetion please don’t ask…


