
GraphQL
An alternative to RESTful APIs

Introduction
➔ An API standard that provides a more efficient, powerful and flexible

alternative to REST

➔ Enables declarative data fetching where a client can specify exactly what

data it needs from an API

What Is GraphQL?
➔ A Query Language For APIs

➔ A long specification document that describes how a graphql server should

behave

➔ Developed and open-sourced by Facebook in 2015

➔ Server libraries for Node.js environment
○ GraphQL.js

○ Apollo Server

○ GraphQL-HTTP

https://spec.graphql.org/

Core Concepts
➔ Schema

➔ Schema Definition Language (SDL)

➔ Types & Fields

➔ Operations – Query, Mutation, Subscription

➔ Resolvers

➔ Introspection

Core Concepts

Schema

Specifies capabilities of the API, contract
between the server and client.

type Person {

 name: String!

 age: Int!

 posts: [Post!]!

}

type Post {

 title: String!

 author: Person!

}

Core Concepts

Schema Definition Language (SDL)

Syntax for writing schemas full-fledged with a
type system.

type Person {

 name: String!

 age: Int!

}

Core Concepts

Types & Fields

Data that is requested for from a GraphQL
server – scalar, list, object, custom scalar,
non-null and interface

type Person {

 name: String!

 age: Int!

 posts: [Post!]!

}

type Post {

 title: String!

 author: Person!

}

Types

Fields

Core Concepts

Query

An operation of structured request for data
from a GraphQL API – CRUD

query {

 persons {

 name

 age

 posts {

 title

 }

 }

}

Core Concepts

Mutation

An operation for performing data changes on
server – CRUD

mutation {

 createPerson(name: "Bob",

age: 36) {

 name

 age

 }

}

Core Concepts

Subscription

An operation for subscribing to an event and
receiving real-time updates – continuous read

subscription {

 newPerson {

 name

 age

 }

}

Core Concepts

Resolvers

A function on a GraphQL server that is
responsible for fetching the data for a single
field

const allPersons = [

 { name: "Bob",age: 32 },

 { name: "Alice", age: 56 }

]

Query: {

 persons: () => allPersons

}

Core Concepts

Introspection

The ability for a client to ask a server for
information about its schema, Discoverability
of a GraphQL server's type system

When To Use
➔ Underfetching and overfetching

➔ Variety of different frontend frameworks and platforms

➔ Fast development & expectation for rapid feature development

➔ Increased mobile usage creates need for efficient data loading

➔ Slow loading times because of request waterfalls and/or overfetching

Demo

Q & A

