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Introduction

Machine Learning (ML) focuses on teaching

computers to learn from data and improve their

performance without being explicitly

programmed.

AI refers to the simulation of human intelligence in

machines. 

Machines programmed to think, learn, and make

decisions in ways that mimic human abilities, like

recognizing patterns, solving problems, or even

understanding languages.



Deep Learning?

AI Machine
Learning Deep 

Learning

Deep Learning (DL) is a specialized subset of machine learning that uses artificial
neural networks (inspired by the human brain) to model and solve complex
problems.



The Biological Inspiration

 Neurons in your cerebral cortex are

connected via axons

A neuron “fires” to the neurons it’s

connected to, when enough of its input

signals are activated

Very simple at the individual neuron level

– but layers of neurons connected in this

way yields learning behavior.

 Billions of neurons, each with thousands

of connections, yields a mind



The Cortical Columns

Neurons in our cortex seem to be arranged into

many stacks, or “columns” that process

information in parallel

“Mini-columns” of around 100 neurons are

organized into larger “hyper-columns”. There are

millions mini-columns in our cortex



Some history

Surprisingly, ANNs have been around for quite a while: they were first introduced

back in 1943 by the neurophysiologist Warren McCulloch and the mathematician

Walter Pitts.

In their landmark paper, McCulloch and Pitts presented a simplified computational

model of how biological neurons might work together in animal brains to perform

complex computations using propositional logic. 

This was the first artificial neural network architecture. 



The first artificial neuron

It has one or more binary (on/off) inputs and one binary output. 

By connecting these neurons together, we can construct logical operators.



The Perceptron is one of the simplest ANN architectures, invented in 1957 by Frank

Rosenblatt.

It is based on a slightly different artificial neuron called threshold logic unit (TLU), or

sometimes a linear threshold unit (LTU). 

The perceptron

A Perceptron is simply composed of a single layer of TLUs, with each TLU connected to

all the inputs

The inputs and output are now numbers (instead of binary on/off values) and each

input connection is associated with a weight.

The TLU computes a weighted sum of its inputs then applies a step function to that

sum and outputs the result.



z = w1 x1 + w2 x2 + � + wn xn = xT w

h(x) = step(z)

The perceptron

The most common step function used in

Perceptrons is the Heaviside step function.



An MLP is composed of one

passthrough(input) layer, one or more

layers of TLUs, called hidden layers, and

one final layer of TLUs called the output

layer.

The layers close to the input layer are

usually called the lower layers, and the

ones close to the outputs are usually

called the upper layers.

Multi-layer perceptrons

When an ANN contains a deep stack of hidden layers, it is called a deep neural network

(DNN). 

The field of Deep Learning studies DNNs, and more generally models containing deep

stacks of computations



Complex neural network architecture

with multiple hidden layers, often

including advanced techniques like

convolutional layers (for image data),

recurrent layers (for sequential data),

attention mechanisms.

Replace step functions with something

better

Apply softmax to output

Modern deep neural networks



Backpropagation is how a neural network learns from its mistakes. It helps adjust the

network’s internal settings so that it makes better predictions over time.

Backpropagation

How does it work?

For each training instance:

Compute the output error

Compute how much each neuron in the previous hidden layer contributed

Back-propagate that error in a reverse pass

Tweak weights to reduce the error using gradient descent



Step function contains only flat segments, so there is no gradient to work with

(Gradient Descent cannot move on a flat surface)

Activation functions (aka rectifiers)

Alternatives: 

Logistic function

Hyperbolic tangent function(tanh)

Exponential linear unit(ELU)

Rectified linear unit (ReLU)

ReLU is common. Fast to compute and works well.

ELU can sometimes lead to faster learning.(when

resource is not our issue)

Graph of ReLU function



Momentum Optimization
Introduces a momentum term to the descent, so it slows down

as things start to flatten and speeds up as the slope is steep

Nesterov Accelerated Gradient
A small tweak on momentum optimization – computes

momentum based on the gradient slightly ahead, not where it’s

now.

RMSprop (Root Mean Square Propagation)
Adaptive learning rate to help point toward the minimum

Adam (Adaptive moment estimation)
It combines the best features of two other optimizers:

Momentum and RMSProp

Popular choice today, easy to use

There are faster (as in faster learning) optimizers than gradient descent

Optimization functions



Avoiding Overfitting

How to prevent it?

Dropout (for Neural Networks) - randomly ignoring some neurons during training

helps prevent the model from relying too much on specific details.

Early stopping (when performance starts dropping)

Regularization terms added to the cost function during training-force the model to

focus on the important features instead of irrelevant detail.

Overfitting happens when a machine learning model learns the

training data too well, including noise and details that don’t

help in making good predictions on new data. 

It’s like a student memorizing answers instead of

understanding concepts.

With thousands of weights to tune, overfitting is a problem



Trial & error is one way

Evaluate a smaller network with less neurons in the hidden layers

Evaluate a larger network with more layers - try reducing the size of each layer as

you progress

More layers can yield faster learning than more neurons in a single layer

Or just use more layers and neurons than you need, and don’t care because you can

early stop.

Tuning your topology

Use “model zoos”



TensorFlow is an open-source machine learning framework developed by Google.

A tensor is just a fancy name for a multi-dimensional array (like a table of numbers).

Tensorflow

why tensorflow?

Easy to Use – Provides high-level APIs like Keras, which makes building models

simple.

Optimized for Speed – Uses GPUs (Graphics Processing Units) to run models faster.

Scalable – Works on small devices (like phones) and large systems (like cloud

servers).

Supports Many AI Applications – Used in self-driving cars, medical diagnosis,

chatbots, and more.



Can install it with `conda install tensorflow or conda install tensorflow-gpu`

Construct a graph to compute your tensors

Initialize your variables

Execute that graph

Using tensorflow



Load up our training and testing data 

Normalize your input data - the real goal is

that every input feature is comparable in

terms of magnitude.

scikit_learn’s StandardScaler can do this for

you.

Creating a NN with tensorflow
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Construct a graph describing our neural

network

Associate an optimizer (ie gradient descent)

to the network

Run the optimizer with your training data

Evaluate your trained network with your

testing data



Easy and fast prototyping

Runs on top of TensorFlow

scikit_learn integration

Less to think about – which often yields

better results without even trying

This is really important! The faster you

can experiment, the better your

results.

Keras



For many common problems, instead of training a model

from scratch, we take an already-trained model and

fine-tune it for our needs. This saves time, requires less

data, and improves performance.

Transfer Learning

Image classification (ResNet, Inception, MobileNet,

Oxford VGG)

NLP (word2vec, GloVe)

Use them as-is, or tune them for your application

Where to find pre-trained models?

`Model Zoos` - most popular place



Adjusting it to improve its accuracy and performance. 

This is done by tweaking different settings (called hyperparameters) or modifying

the model’s layers during training.

Tuning Neural Networks



Neural networks are trained by gradient descent (or similar means)

We start at some random point, and sample different solutions (weights) seeking to

minimize some cost function, over many epochs

How far apart these samples are is the learning rate

Learning Rate



Too high a learning rate means you might overshoot the optimal solution!

Too small a learning rate will take too long to find the optimal solution 

Effect of learning rate



How many training samples are used within each epoch

Smaller batch sizes can work their way out of “local minima” more easily

Batch sizes that are too large can end up getting stuck in the wrong solution

Batch Size


