
A Little Bit About Rust For
Web Developers
Discovering Rust and how its shaping new ways to write

programs

By: Muhammed Towfik Jemal

What is Rust?
Modern Systems
Programming
A language built for

performance and safety without

garbage collector and runtime.

Memory Safety
Prevents common bugs and

security issues at compile

time.

Runs Everywhere
Can be run on Web, Embedded System and Operating Systems.

Rust's Philosophy and Goals

Fearless Concurrency
Safe parallel programming without data races

Zero-cost Abstractions
High-level code with low-level performance

Memory Safety
Catch errors at compile time, not runtime

Rust is Already in Your Tools

SWC
Powers Next.js, replacing Babel with 20x faster compilation.

Turbopack
Vercel's Webpack replacement with massive speed

improvements.

esbuild & Parcel
Modern bundlers inspired by or built with Rust.

Tech’s Using Rust

Cloudflare
Uses for cloudflare workers (with wasm)

and Pingora.

Discord
Handles millions of concurrent users with

low-latency services.

Linux & Ubuntu
Integrating Rust into critical

infrastructure and kernel code.

Memory Handling
Rust's Approach

● Ownership and Borrowing

● No Runtime Overhead

● Explicit Lifetimes:

● Zero-Cost Abstractions (no garbage Collection)

Garbage-Collected Languages (e.g., Java,
JavaScript, C#) Approach
● Automatic Memory Management

● Non-deterministic Deallocation:

● Simplicity for Developers

● No Compile-Time Safety

Manual Memory Management (e.g.,
C, C++) Approach

● Explicit Control

● Risk of Errors

● No Safety Guarantees

Reference Counting (e.g., Swift, Python)
Approach
● Automatic Deallocation (via Ref Counting)

● Overhead

● More Flexible than GC

Rust's Borrow Checker

Ownership
Each value has a single owner variable

Borrowing
References allow safe access to data

Lifetimes
Track how long references stay valid

Validation
Compiler enforces rules at build time

OwnerShip

● Each value has one owner

● When the owner goes out of scope, the value is automatically dropped

● You can move ownership to another variable, but only one owner exists at a time.

● You can borrow a value temporarily using references, but Rust enforces rules to prevent

data races and invalid memory access.

Borrowing
Mutable

● Allows read/write access to a value.

● Only one mutable borrow is allowed at a time.

● Prevents data races by enforcing exclusive access

Immutable

● Allows read-only access to a value.

● Many immutable borrows are allowed at the same time.

● Useful for functions or scopes that only need to inspect data.

LifeTimes

● Ensure that references are always valid — they prevent dangling references at compile

time.

● Rust usually infers lifetimes automatically, but sometimes you must annotate them

(e.g., in functions returning references).

● Lifetime annotations (like 'a) tell the compiler how long references must live relative to

each other.

● Lifetimes don’t affect program behavior at runtime — they exist only at compile time to

ensure memory safety.

Validation
Rust borrow checker validation prevents

● Use-after-free

● Double frees

● Dangling references

● Data races

● Aliasing bugs

● Unsafe mutation

● Using a reference to data that's already been dropped

Developer Experience

Cargo
All-in-one package manager,

build tool, and test runner.

• Dependency management

• Consistent project structure

• Built-in testing framework

Crates.io
Rich ecosystem of reusable

packages.

• Over 100,000 packages

• Semantic versioning

• Strong security focus

Tooling
First-class developer tools make coding enjoyable.

• Excellent error messages

• IDE integration

• Documentation generators

Pros & Cons

Pros
• Memory Safety Without Garbage Collection

• Performance

• Concurrency and Parallelism

• Strong Type System and Compile-Time Safety

• Cross-Platform and Embedded Development

• Zero-Cost Abstractions

• Growing Ecosystem and Tooling

Cons
• Steep Learning Curve

• Compilation Time

• Limited Ecosystem Compared to More

Mature Languages

• Smaller Talent Pool

• Less Mature Tooling for Some Domains

When To Use Rust

1. Performance-Critical Applications

2. Memory Safety Without GC

3. Concurrency and Parallelism

4. Embedded and Low-Level Systems

5. Large-Scale Software with High Safety

Requirements

When Not To Use Rust

1. Rapid Development Need

2. Non-Systems or Non-Performance-Critical

Workloads

3. Simple CRUD APPS

Why Really Learn Rust ?
(My Take)

1. To Write Performant Code

2. To Have a Memory-First Mindset

3. To Understand Concurrency

4. To Understand Low-Level Programming

5. To Understand JavaScript Tools Written in Rust

Where To Learn?

1. The Rust Book

2. Rustlings Course

3. Rust By Example

Ownership taken. Bugs avoided.
Rust on.

Open For Any Questions

