
C O S I N E  S I M I L A R I T Y  I N
M A C H I N E  L E A R N I N G   

I n t r o d u c t i o n  t o  c o s i n e  s i m i l a r i t y
W h a t  a r e  V e c t o r s ?  ( R E C A P )
W h a t  i s  C o s i n e  S i m i l a r i t y ?
D e s i g n  o f  c h a t - b o t s ?
V e c t o r  D a t a b a s e s

 b y  N a t n a e l  T e k l e m a r i a m



Cosine similarity measures how similar two things are by calculating the angle between their vector
representations—ignoring their size and focusing only on their direction

 
      Real-World Examples:
        1. Daily.dev – Recommends articles based on what you read (not just keywords, but meaning!)
        2. Spotify/Netflix – Suggests songs/movies similar to your taste
        3. RAG Chatbots – Retrieves the most relevant info before generating an   answer

       Problem:
    * Machines don’t "understand" text like humans.
    * We need a way to measure semantic similarity, not just exact word matches.

     Solution: Cosine Similarity – A simple yet powerful math trick to compare meanings!

W H A T  I S  C O S I N E  S I M I L A R I T Y ?



Why Cosine Similarity? (The "Before & After" Story)

Before (The Problem):
❌ Keyword search fails – "Python" could mean the snake or the language.
❌ Euclidean distance misleads – A long document isn’t necessarily more relevant.
❌ Machines don’t understand meaning – They need a way to compare semantics, not
just words.

After (The Solution):
✅ Cosine similarity compares meaning – By measuring the angle between vectors.
✅ Works in high dimensions – Perfect for AI models like LLMs.
✅ Powering real-world AI – From Spotify playlists to ChatGPT’s answers.

Analogy: "Think of it like comparing two people’s music tastes. It’s not about how many songs they’ve listened to (Euclidean
distance), but how alike their preferences are (cosine similarity)."



1. What’s a Vector?

Definition:
A list of numbers that represents data in multi-dimensional space.

Analogy: Like GPS coordinates, animals, images, videos and more ...
     e.g., "Cat" = [0.7, -0.2, 0.4, ...]).

2. What’s a Vector Embedding?
Definition:
A vector that captures semantic meaning of text/images/etc., generated by AI
models.

Example:
"King" → [0.8, -0.3, 0.5]
"Queen" → [0.75, -0.25, 0.6] (close in space = similar meaning).

Key Idea: Words with similar meanings cluster together.

V E C T O R S  R E C A P :



S I M I L A R I T Y  B E T W E E N
T W O  O B J E C T S

       similarity between two vectors:
Similar: Arrows pointing nearly the same way (cosine
≈ 1).
Dissimilar: Arrows at 90° (cosine = 0).
Opposite: Arrows at 180° (cosine = -1)

Cosine similarity ignores vector length — so a short tweet and
a long article can still be a match if their meaning aligns



3. How Are Embeddings Created?

Models: Word2Vec, BERT, OpenAI embeddings.
Process:

a.Model reads massive text (e.g., Wikipedia).
b.Learns to map words/documents to vectors based on context.

Visual: Show words plotted in 3D space (e.g., "dog" near "puppy", far from "car").

4. Why Do We Need Them?
Machines don’t understand text → Embeddings convert words to math.
Enables: Semantic search, recommendations, chatbots (RAG).

. . . c o n t i n u e d



C O S I N E  S I M I L A R I T Y  I N  A C T I O N :  L I O N  V S .  C A T  V S .  D O G

1. Assign Embeddings (Simplified 2D Example)

Let’s pretend these are their vector coordinates:
Cat: [0.8, 0.5]
Dog: [0.7, 0.6] (similar to cat)
Lion: [0.9, 0.2] (less similar direction)

(Note: Real embeddings have 100s of dimensions, but we’ll visualize in 2D for clarity.)

2. Calculate Cosine Similarity
Formula:  cos(θ) = (A · B) / (||A|| * ||B||)

Calculation Cosine Similarity calculation:
Cat vs Dog = (0.8*0.7 + 0.5*0.6) / (√(0.8²+0.5²) * √(0.7²+0.6²))
 value = 0.98 (Nearly identical)

Cat vs Lion = (0.8*0.9 + 0.5*0.2) / (same denominators)
 value = 0.85 (Similar but less so)



D E S I G N  A  S M A R T  F A Q  C H A T B O T  W I T H  C O S I N E  S I M I L A R I T Y

" U s e  v e c t o r  e m b e d d i n g s  a n d  c o s i n e  s i m i l a r i t y  t o  m a t c h  u s e r  q u e s t i o n s  w i t h  a n s w e r s . "

S t e p  1 :  C h a t b o t  B l u e p r i n t

A r c h i t e c t u r e :

1 . U s e r  I n p u t :  " H o w  d o  I  r e s e t  m y  p a s s w o r d ? "
2 . E m b e d d i n g  M o d e l :  C o n v e r t  q u e s t i o n  →  v e c t o r  

     ( e . g . ,  [ 0 . 4 ,  - 0 . 2 ,  0 . 8 ] )
 3 . V e c t o r  D a t a b a s e :  P r e - s t o r e d  F A Q  e m b e d d i n g s  
     ( e . g . ,  " R e s e t  p a s s w o r d "  =  [ 0 . 3 8 ,  - 0 . 1 9 ,  0 . 8 2 ] )
 4 . C o s i n e  S i m i l a r i t y :  C o m p a r e  v e c t o r s  t o  f i n d  c l o s e s t  m a t c h .
 5 . R e s p o n s e :  R e t u r n  b e s t - m a t c h e d  a n s w e r .



C H A T B O T  A R C H I T E C T U R E



V E C T O R  D A T A B A S E S

Definition:

A database optimized to store and query vector embeddings at scale.

Key Properties:
1.Native Vector Support: Handles high-dimensional data (e.g., 768D

embeddings).
2.Similarity Search: Finds closest vectors via cosine/L2 distance.
3.Hybrid Storage: Can also store metadata (e.g., text, timestamps).





1.  Magnitude Ignorance

Example: Short text ("cat") vs. long text ("a large domesticated feline")
may have identical direction but different magnitudes.
Fix: Normalize vectors or combine with Euclidean distance.

  2.High Dimensional Sparsity

Example: In very high dimensions (e.g., 1000D), random vectors can
appear "similar" due to the curse of dimensionality.

Fix: Use dimensionality reduction (PCA, UMAP) or switch to inner product for
normalized embeddings.

D R A W B A C K S  O F  C O S I N E  S I M I L A R I T Y



F I N A L  T H O U G H T

" C O S I N E  S I M I L A R I T Y  T U R N S  D A T A  I N T O
M E A N I N G ,  V E C T O R  D A T A B A S E S  M A K E  I T

S E A R C H A B L E ,  A N D  R A G  B R I N G S  I T  T O  L I F E —
T H I S  T R I O  I S  R E S H A P I N G  A I ’ S  F U T U R E . "



T H A N K  Y O U !


