
C O S I N E S I M I L A R I T Y I N
M A C H I N E L E A R N I N G

I n t r o d u c t i o n t o c o s i n e s i m i l a r i t y
W h a t a r e V e c t o r s ? (R E C A P)
W h a t i s C o s i n e S i m i l a r i t y ?
D e s i g n o f c h a t - b o t s ?
V e c t o r D a t a b a s e s

 b y N a t n a e l T e k l e m a r i a m

Cosine similarity measures how similar two things are by calculating the angle between their vector
representations—ignoring their size and focusing only on their direction

 Real-World Examples:
 1. Daily.dev – Recommends articles based on what you read (not just keywords, but meaning!)
 2. Spotify/Netflix – Suggests songs/movies similar to your taste
 3. RAG Chatbots – Retrieves the most relevant info before generating an answer

 Problem:
 * Machines don’t "understand" text like humans.
 * We need a way to measure semantic similarity, not just exact word matches.

 Solution: Cosine Similarity – A simple yet powerful math trick to compare meanings!

W H A T I S C O S I N E S I M I L A R I T Y ?

Why Cosine Similarity? (The "Before & After" Story)

Before (The Problem):
❌ Keyword search fails – "Python" could mean the snake or the language.
❌ Euclidean distance misleads – A long document isn’t necessarily more relevant.
❌ Machines don’t understand meaning – They need a way to compare semantics, not
just words.

After (The Solution):
✅ Cosine similarity compares meaning – By measuring the angle between vectors.
✅ Works in high dimensions – Perfect for AI models like LLMs.
✅ Powering real-world AI – From Spotify playlists to ChatGPT’s answers.

Analogy: "Think of it like comparing two people’s music tastes. It’s not about how many songs they’ve listened to (Euclidean
distance), but how alike their preferences are (cosine similarity)."

1. What’s a Vector?

Definition:
A list of numbers that represents data in multi-dimensional space.

Analogy: Like GPS coordinates, animals, images, videos and more ...
 e.g., "Cat" = [0.7, -0.2, 0.4, ...]).

2. What’s a Vector Embedding?
Definition:
A vector that captures semantic meaning of text/images/etc., generated by AI
models.

Example:
"King" → [0.8, -0.3, 0.5]
"Queen" → [0.75, -0.25, 0.6] (close in space = similar meaning).

Key Idea: Words with similar meanings cluster together.

V E C T O R S R E C A P :

S I M I L A R I T Y B E T W E E N
T W O O B J E C T S

 similarity between two vectors:
Similar: Arrows pointing nearly the same way (cosine
≈ 1).
Dissimilar: Arrows at 90° (cosine = 0).
Opposite: Arrows at 180° (cosine = -1)

Cosine similarity ignores vector length — so a short tweet and
a long article can still be a match if their meaning aligns

3. How Are Embeddings Created?

Models: Word2Vec, BERT, OpenAI embeddings.
Process:

a.Model reads massive text (e.g., Wikipedia).
b.Learns to map words/documents to vectors based on context.

Visual: Show words plotted in 3D space (e.g., "dog" near "puppy", far from "car").

4. Why Do We Need Them?
Machines don’t understand text → Embeddings convert words to math.
Enables: Semantic search, recommendations, chatbots (RAG).

. . . c o n t i n u e d

C O S I N E S I M I L A R I T Y I N A C T I O N : L I O N V S . C A T V S . D O G

1. Assign Embeddings (Simplified 2D Example)

Let’s pretend these are their vector coordinates:
Cat: [0.8, 0.5]
Dog: [0.7, 0.6] (similar to cat)
Lion: [0.9, 0.2] (less similar direction)

(Note: Real embeddings have 100s of dimensions, but we’ll visualize in 2D for clarity.)

2. Calculate Cosine Similarity
Formula: cos(θ) = (A · B) / (||A|| * ||B||)

Calculation Cosine Similarity calculation:
Cat vs Dog = (0.8*0.7 + 0.5*0.6) / (√(0.8²+0.5²) * √(0.7²+0.6²))
 value = 0.98 (Nearly identical)

Cat vs Lion = (0.8*0.9 + 0.5*0.2) / (same denominators)
 value = 0.85 (Similar but less so)

D E S I G N A S M A R T F A Q C H A T B O T W I T H C O S I N E S I M I L A R I T Y

" U s e v e c t o r e m b e d d i n g s a n d c o s i n e s i m i l a r i t y t o m a t c h u s e r q u e s t i o n s w i t h a n s w e r s . "

S t e p 1 : C h a t b o t B l u e p r i n t

A r c h i t e c t u r e :

1 . U s e r I n p u t : " H o w d o I r e s e t m y p a s s w o r d ? "
2 . E m b e d d i n g M o d e l : C o n v e r t q u e s t i o n → v e c t o r

 (e . g . , [0 . 4 , - 0 . 2 , 0 . 8])
 3 . V e c t o r D a t a b a s e : P r e - s t o r e d F A Q e m b e d d i n g s
 (e . g . , " R e s e t p a s s w o r d " = [0 . 3 8 , - 0 . 1 9 , 0 . 8 2])
 4 . C o s i n e S i m i l a r i t y : C o m p a r e v e c t o r s t o f i n d c l o s e s t m a t c h .
 5 . R e s p o n s e : R e t u r n b e s t - m a t c h e d a n s w e r .

C H A T B O T A R C H I T E C T U R E

V E C T O R D A T A B A S E S

Definition:

A database optimized to store and query vector embeddings at scale.

Key Properties:
1.Native Vector Support: Handles high-dimensional data (e.g., 768D

embeddings).
2.Similarity Search: Finds closest vectors via cosine/L2 distance.
3.Hybrid Storage: Can also store metadata (e.g., text, timestamps).

1. Magnitude Ignorance

Example: Short text ("cat") vs. long text ("a large domesticated feline")
may have identical direction but different magnitudes.
Fix: Normalize vectors or combine with Euclidean distance.

 2.High Dimensional Sparsity

Example: In very high dimensions (e.g., 1000D), random vectors can
appear "similar" due to the curse of dimensionality.

Fix: Use dimensionality reduction (PCA, UMAP) or switch to inner product for
normalized embeddings.

D R A W B A C K S O F C O S I N E S I M I L A R I T Y

F I N A L T H O U G H T

" C O S I N E S I M I L A R I T Y T U R N S D A T A I N T O
M E A N I N G , V E C T O R D A T A B A S E S M A K E I T

S E A R C H A B L E , A N D R A G B R I N G S I T T O L I F E —
T H I S T R I O I S R E S H A P I N G A I ’ S F U T U R E . "

T H A N K Y O U !

