
Integrating LLMs into Web
Applications using Tool Call
Explore the power of Large Language Models (LLMs) in web applications,

focusing on how tool calls enable real-world interactions and actions.

https://gamma.app/?utm_source=made-with-gamma

Outline
Software Evolution

What is tool call

When to Use Tool Calls

Best Practices

Security Considerations

https://gamma.app/?utm_source=made-with-gamma

Software Evolution: From 1.0 to AI-Native

Software 1.0: Hand-Coded

Explicitly programmed with human-

written rules. Logic is fixed and

deterministic.

Software 2.0: Data-Driven

Machine learning models learn

patterns from data. Behavior adapts

over time.

Software 3.0: AI-Native

LLMs drive core functionality. Systems

reason, learn, and use tools to act.

https://gamma.app/?utm_source=made-with-gamma

Version Software 1.0 Software 2.0 Software 3.0 (AI-Native)

Definition Hand-coded logic and rules Data-driven models with

ML/AI assistance

AI-first systems with

reasoning, planning, and

memory

Development Written by developers line-

by-line

Trained on data by

developers and data

scientists

Co-created or self-

improving with foundation

models

Inputs Code + Static requirements Code + Labeled Data Code + Multimodal data +

Natural language prompts

Examples Word, most legacy software Recommendation engines ChatGPT, Copilot,

autonomous agents

User Interaction GUI, predefined workflows Some personalization or

learning

Conversational, adaptive,

context-aware

Knowledge Source Developer logic Historical data Language models, real-time

data, memory

https://gamma.app/?utm_source=made-with-gamma

<In 2025, the best programming language is
English=

https://gamma.app/?utm_source=made-with-gamma

Tool Call

Toolcall is a way for a LLM to call

external tools or functions (e.g., APIs)

during a conversation, using structured

input.

You define what tools/functions are

available.

The model picks and calls one with

arguments.

Example: The model calls

search_flight("Addis Ababa",
"Nairobi") when asked to book a

flight.

AI Agent

AI entities make decisions, take actions.

LLMs serve as their 'brain'.

It often uses a language model (LLM) as

its "brain".

Can act independently or with other

agents.

Example: A shopping assistant that

searches, compares, and buys items for

you.

Model Context Protocol

Communication protocol that connects

multiple agents, tools, and memory

systems to work together in a structured

and persistent way..

Enables complex multi-step, multi-

agent workflows.

Tracks agent context, memory,

messages, and tool interactions.

https://gamma.app/?utm_source=made-with-gamma

What is a Tool Call?

Actionable Commands

LLMs call functions from user

language.

AI & Systems Bridge

Connects AI to APIs, databases,

and real-world tools.

Expanded Capabilities

Enables LLMs to perform tasks

beyond text generation.

https://gamma.app/?utm_source=made-with-gamma

Tool calls allow LLMs to trigger predefined backend functions using structured JSON, enabling dynamic and interactive

applications.

LLM Request

Initiates a query

Tool Call

Triggers function

Function Logic

Executes backend task

Result

Data returned

LLM Reply

Final response

https://gamma.app/?utm_source=made-with-gamma

When to Use Tool Calls

1 Real-time data

Retrieve current information

2 Secure actions

Perform protected operations

3 Multi-step workflows

Automate complex processes

Retrieving Real-Time or External Data

Interacting with Databases and API

trigger real-world actions (book, send,
update)

Tool calls are ideal for dynamic data retrieval, secure operations, and complex multi-step logic, enhancing application capabilities.

https://gamma.app/?utm_source=made-with-gamma

Architecture Overview
Understand the complete flow from user interaction to LLM response,

highlighting the role of tool call middleware in integrating business logic

and external APIs.

https://gamma.app/?utm_source=made-with-gamma

How to Implement Tool Calls

Define schema

Structure the tool

Register tools

Configure LLM access

Route requests

Process tool calls

Return results

Format model response

Implementation involves defining tool schemas, registering them with the LLM, and handling requests and responses.

https://gamma.app/?utm_source=made-with-gamma

Best Practices

By adopting these best practices4from precise tool design to robust error handling4you can ensure highly reliable LLM

integrations.

Atomic Tools

Design tools to perform a single,

focused function for clarity and

efficiency.

Validate Inputs

Implement strict validation to ensure

data integrity and prevent errors.

Predictable Output

Ensure tools consistently return data

in a predictable and easily parsable

format.

Clear Naming

Use intuitive names and descriptions

for tools to enhance LLM

understanding and usage.

Robust Error Handling

Incorporate retry mechanisms and

timeouts for resilient and reliable tool

execution.

https://gamma.app/?utm_source=made-with-gamma

Security Considerations

1 Input sanitization

Cleanse all incoming data

2 Role-based access

Restrict tool permissions

3 Rate limiting

Prevent abuse

4 Secure external APIs

Encrypt and authenticate connections

5 Log tool usage

Monitor with redaction

Prioritize security by sanitizing inputs, implementing access controls, and securing external API interactions for safe LLM

deployments.

https://gamma.app/?utm_source=made-with-gamma

Demo

live demo : https://ai-todo-beta.vercel.app/

Github : https://github.com/yosefw1221/ai-todo

https://github.com/yosefw1221/ai-todo
https://gamma.app/?utm_source=made-with-gamma

Thank You

https://gamma.app/?utm_source=made-with-gamma

