

Introduction to Machine Learning

Machine learning empowers computers to learn from data. It has three main types: supervised, unsupervised, and reinforcement learning. This presentation explores these categories, focusing on supervised learning with linear and logistic regression.

Supervised Learning: Learning from Labeled Data

Definition

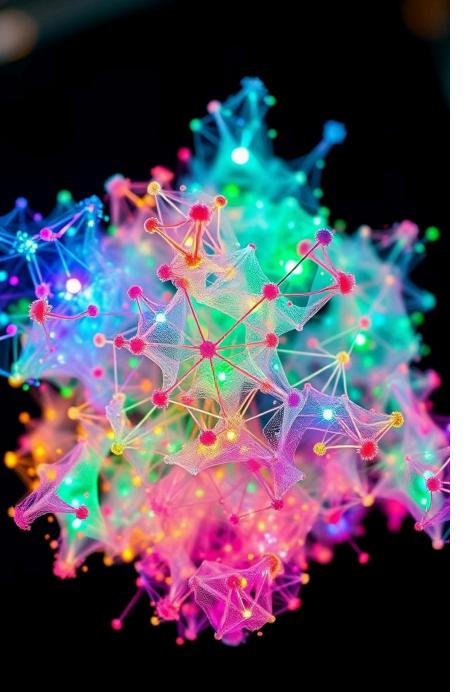
Algorithms learn from labeled data to predict or classify outcomes.

Goal

Map input features to outputs using example data pairs.

Common Algorithms

- Linear Regression
- Logistic Regression
- Support Vector Machines (SVM)
- Decision Trees
- Random Forests
- Neural Networks



Unsupervised Learning: Discovering Hidden Patterns

Definition

Algorithms learn from unlabeled data to identify structures and patterns.

Goal

Discover intrinsic relationships and groupings in data.

Common Algorithms

- K-Means Clustering
- Hierarchical Clustering
- Principal Component Analysis (PCA)
- Association Rule Mining (Apriori)
- Anomaly Detection

Reinforcement Learning: Learning Through Interaction

Definition

Algorithms learn by interacting with environments via trial and error.

Goal

Maximize a cumulative reward signal over time.

Common Algorithms

- Q-Learning
- Deep Q-Networks (DQN)
- SARSA
- Policy Gradients (REINFORCE, A2C, PPO)
- Actor-Critic Methods

Diving into Supervised Learning

Prevalence

Accounts for 70% of practical machine learning applications.

Nature

Clear input-output mapping problems with labeled data.

Focus Areas

Linear Regression and Logistic Regression techniques explored.

Linear Regression: Predicting Continuous Values

Goal

1

2

3

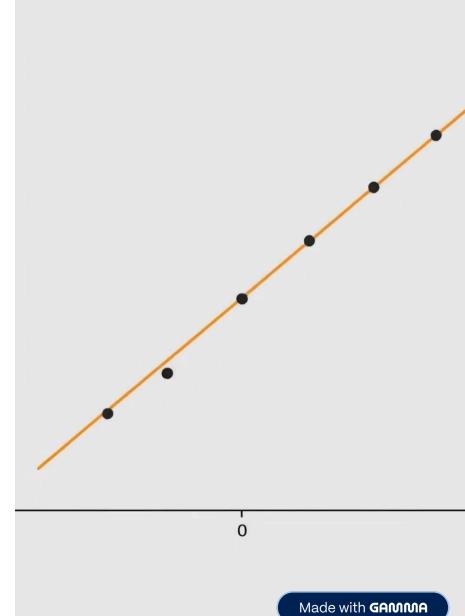
Model linear relationships between input variables and output.

Equation

 $Y = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + ... + \varepsilon$ (predicted value formula)

Example

Predict house prices using size, location, and room count.



Why Linear Regression is Important

Linear regression is a foundational and highly practical machine learning technique due to several key reasons:

- **Simplicity and Interpretability:** Its straightforward nature makes it easy to understand and interpret, serving as an excellent entry point for learning machine learning concepts.
- **Predictive Power:** It effectively predicts future outcomes based on historical data, proving valuable across diverse sectors like finance, healthcare, and marketing.
- **Foundation for Other Models:** Many advanced algorithms, including logistic regression and neural networks, build upon the fundamental principles of linear regression.
- **Computational Efficiency:** It is computationally inexpensive and performs well for problems exhibiting a clear linear relationship between variables.
- Widespread Adoption: It is a widely used technique in both statistics and machine learning for various regression tasks.
- **Insightful Analysis:** It provides clear insights into the relationships between variables, illustrating how much one variable influences another.

The goal of linear regression is to find a straight line that minimizes the error (the difference) between the observed data points and the predicted values. This line helps us predict the dependent variable for new, unseen data.

$$y' = heta 0 + heta 1x1 + heta 2x2 + \dots + heta nxn$$

Where y^ is the predicted value. The goal is to minimize the error between observed and predicted values using the following cost function:

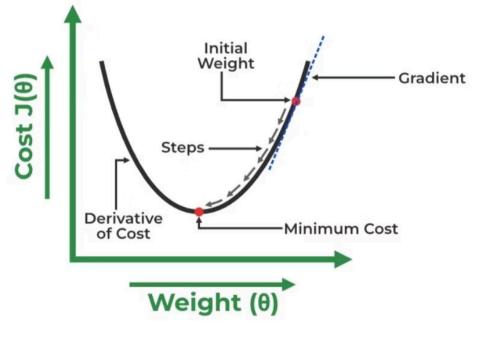
$$Costfunction(J) = n1 \sum ni(yi'-yi)2$$

• $x1, x2, \ldots, xn$ are the independent variables.

The coefficients (weights) $\theta 1, \theta 2, \dots, \theta n$ correspond to each predictor.

Gradient Descent for Linear Regression

Linear regression can be trained using gradient descent to minimize the mean squared error (MSE). The model starts with random θ_1 and θ_2 values and iteratively updates them to find the best-fit line.



Gradient Descent

Logistic Regression: Predicting Categories

Goal

1

2

3

4

Predict probability of binary outcomes using input features.

Logistic Function (p)

The probability 'p' of a positive outcome is given by the sigmoid function:

 $p=1/(1+e^{-z})$

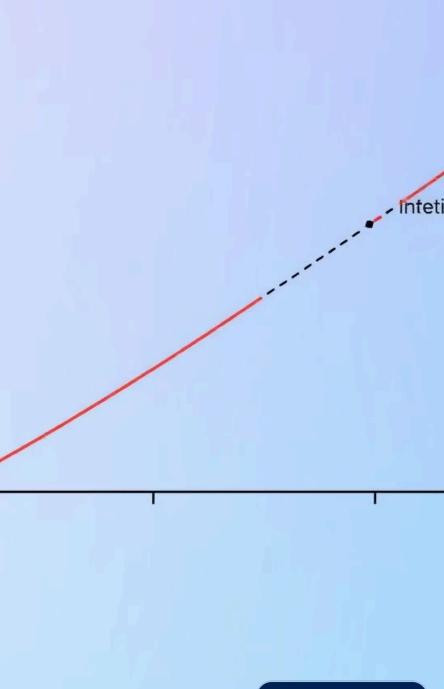
Linear Combination (z)

The input 'z' to the sigmoid function is a linear combination of the input features (X_i) and their corresponding weights (θ_i) , similar to the output of linear regression:

 $z = heta_0 + heta_1 X_1 + heta_2 X_2 + \dots + heta_n X_n$

Example

Predict customer churn based on demographics and usage.



Conclusion: Supervised Learning Applications

Linear Regression

Used for sales forecasting with accuracy within 5%.

Logistic Regression

Effective in fraud detection achieving 90% accuracy.

Choosing Algorithms

Match algorithm to your data type and problem goals.