
K-Nearest Neighbour (KNN)
Algorithm

Outline

1. Introduction

2. The KNN Algorithm

3. Measuring Model Accuracy

4. Implementation

5. Pros & Cons

6. When To Use KNN

Introduction

- In supervised learning, predictions are either

- Classification: Predicting the output to be one of a predefined class/category

- Binary Classification: For example, Email is a spam or not

- Multiclass Classification: For example, Email belongs to Primary, Work, Social, Promotion,

etc

- Regression: Predicting the output to be a continuous/numerical variable

- For example, predict price of a house given features such as property size, number of

bedrooms etc

- KNN algorithm is used to predict both Classification & Regression

Introduction

- An algorithm that predicts the label of a query point based on the majority observation of its K

neighbours (Similarity Measure)

- It tries to answer:

- Classification: What class does a query point belong to based on the majority vote of its K

nearest neighbors?

- Regression: What value should I assign to this query point, based on the average of its K

nearest neighbors’ values?

- K refers to how many neighbours to observe

The K-Nearest Neighbour Algorithm

- From the scatterplot, classify the black observation to be red or black in color

Query Point

The K-Nearest Neighbour Algorithm

- K = 3, 2 of the 3 observations are red so the color is classified as red

The K-Nearest Neighbour Algorithm

- K = 5, 3 of the 5 observations are blue so the color is classified as blue

The K-Nearest Neighbour Algorithm

- Non parametric Algorithm: KNN does not learn any parameters during

training and only has 2 hyperparameters

- K

- Distance Metric (To find nearest points)

- It is referred as a Lazy Algorithm

- It computes all distances and neighbours during prediction time

KNN Distance Metric

- To find the nearest neighbours, we can use Euclidean distance between the

query point & other data points

KNN Distance Metric

Weight (KG) Height (CM) Class

55 170 Normal

57 173 Normal

58 169 Normal

56 174 Underweight

65 172 Normal

51 167 Underweight

57 170 ??

KNN Distance Metric

KNN Distance Metric at K=3

Weight (KG) Height (CM) Class Euclidean
Distance

58 169 Normal 1.4

55 170 Normal 2

57 173 Normal 3

56 174 Underweight 4.1

51 167 Underweight 6.7

65 172 Normal 8.2

57 170 Normal

Classification: Mode

Regression: Mean

How to pick the right value for K

- Sqrt(n), where n is the total number of data points

- Total data points, n=100

- Number of classes is 4

- K= √100 =10

- Odd value of k is recommended to avoid confusion, even value of K can

create balance between the features

- Using techniques like Cross Validation

Picking the value of K - Overfitting

K is small

- Overly sensitive to noise & variation

- Behaves more like a look up table

- Model performs well on training data but poor on unseen data

Picking the value of K - Underfitting

K is too large

- It just picks the most occurring label globally

- Model performs poor on both training & unseen data

Measuring Model Accuracy

- Accuracy = correct predictions / total observations

Implementation

Cross Validation

Pros

- Simple to implement

- Few Hyperparameters (only a K value & a distance metric / euclidean dist.)

- Adaptable (Adjusts to new data since all training data is stored in memory)

- No training time needed

Cons

- Slow at prediction time: Computes distance at every training point

- Memory intensive: Stores entire data set

- Not ideal for large data set as it requires more computational complexity
which compromises model performance

- Curse of dimensionality: Does not perform well with high dimensional data
inputs (causes distances between points to become more similar, making it
difficult for KNN to find meaningful neighbours)

When to use KNN

- Data is labeled

- Data set is small to medium

- Data is noise free
Weight Height Class

45 100 Underweight

55 200 55

200 133 Overweight

77 150 Normal

Noise

When to use KNN

- Data is low dimensional (1D to 10D)

- The decision boundary is non-linear / irregular

- When nearby points in feature space truly represent similar labels

Real World Use Cases

- Recommendation systems

- Customers who bought this also bought

- Credit Scoring or Risk Assessment

- Predict if someone will default on a loan by finding similar past customers

- Healthcare

- Finding patients most similar with query point & see what their diagnosis is

- Geospatial Applications

- Fitted for location data where “closeness” matters

- Used in Google maps to find nearest points of interest

Q&A

Thank You!

